
Two Bits
-

The Cultural Significance of Free Software

Christopher M. Kelty

2008

Two Bits - The Cultural Significance of Free Software

Copyright © 2008 Duke University Press
Printed in the United States of America on acid-free paper
Designed by C. H. Westmoreland
Typeset in Charis (an Open Source font) by Achorn International
Library of Congress Cataloging-in-Publication data and republication acknowledgments
appear on the last printed pages of this book.

Licensed under the Creative Commons Attribution-NonCommercial-Share Alike License,
available at https://creativecommons.org/licenses/by-nc-sa/3.0/ or by mail from Cre-
ative Commons, 559 Nathan Abbott Way, Stanford, Calif. 94305, U.S.A. "NonCommer-
cial" as defined in this license specifically excludes any sale of this work or any portion
thereof for money, even if sale does not result in a profit by the seller or if the sale is
by a 501(c)(3) nonprofit or NGO.
Duke University Press gratefully acknowledges the support of HASTAC (Humanities,
Arts, Science, and Technology Advanced Collaboratory), which provided funds to help
support the electronic interface of this book.
Two Bits is accessible on the Web at twobits.net.

Two Bits Christopher M. Kelty a

https://twobits.net
https://kelty.org/

Two Bits - The Cultural 1

Significance of Free Software
Christopher M. Kelty

Two Bits Christopher M. Kelty 1

https://twobits.net
https://kelty.org/

Two Bits a

Dedication 2

Preface 3

Acknowledgements 5

Introduction 7

Part I the internet 26

1.Geeks and Recursive Publics 27
From the Facts of Human Activity

. 29
Geeks and Their Internets

. 31
Operating Systems and Social Systems

. 34
The Idea of Order at the Keyboard

. 35
Internet Silk Road

. 40
/pub

. 42
From Napster to the Internet

. 45
Requests for Comments

. 50
Conclusion: Recursive Public

. 53

2.Protestant Reformers, Polymaths, Transhumanists 55
Protestant Reformation

. 56
Polymaths and Transhumanists

. 64
Conclusion

. 77

Two Bits Christopher M. Kelty i

https://twobits.net
https://kelty.org/

Part II free software 79

3.The Movement 80
Forking Free Software, 1997-2000

. 81
A Movement?

. 91
Conclusion

. 93

4.Sharing Source Code 95
Before Source

. 97
The UNIX Time-Sharing System

. 101
Sharing UNIX

. 104
Porting UNIX

. 106
Forking UNIX

. 110
Conclusion

. 114

5.Conceiving Open Systems 115
Hopelessly Plural

. 116
Open Systems One: Operating Systems

. 122
Figuring Out Goes Haywire

. 123
Denouement

. 129
Open Systems Two: Networks

. 131
Bootstrapping Networks

. 132
Success as Failure

. 137
Conclusion

. 139

6.Writing Copyright Licenses 141
Free Software Licenses, Once More with Feeling

. 142

Two Bits Christopher M. Kelty ii

https://twobits.net
https://kelty.org/

EMACS, the Extensible, Customizable, Self-documenting, Real-time Display
Editor
. 144

The Controversy
. 148

The Context of Copyright
. 157

Conclusion
. 164

7.Coordinating Collaborations 167
From UNIX to Minix to Linux

. 168
Design and Adaptability

. 173
Patch and Vote

. 177
Check Out and Commit

. 182
Coordination Is Design

. 188
Conclusion: Experiments and Modulations

. 190

Part III modulations 191

8.”If We Succeed, We Will Disappear” 192
After Free Software

. 193
Stories of Connexion

. 194
Modulations: From Free Software to Connexions

. 199
Modulations: From Connexions to Creative Commons

. 202
Participant Figuring Out

. 206

9.Reuse, Modification, and the Nonexistence of Norms 211
Whiteboards: What Was Publication?

. 212
Publication in Connexions

. 215
Agency and Structure in Connexions

. 221

Two Bits Christopher M. Kelty iii

https://twobits.net
https://kelty.org/

From Law and Technology to Norm
. 223

On the Nonexistence of Norms in the Culture of No Culture
. 228

Conclusion
. 234

Conclusion 235
The Cultural Consequences of Free Software

. 235

Acknowledgement 242

Acknowledgment 243

Library of Congress 244

Library of Congress Catalog 245

Bibliography 246

Book Index 262

Index 263

Two Bits Christopher M. Kelty iv

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Dedication 2

To my parents, Anne and Ted 3

Two Bits Christopher M. Kelty 2

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Preface 4

This is a book about Free Software, also known as Open Source Software, and is meant 5

for anyone who wants to understand the cultural significance of Free Software. Two
Bits explains how Free Software works and how it emerged in tandem with the Internet
as both a technical and a social form. Understanding Free Software in detail is the best
way to understand many contentious and confusing changes related to the Internet, to
”commons,” to software, and to networks. Whether you think first of e-mail, Napster,
Wikipedia, MySpace, or Flickr; whether you think of the proliferation of databases, iden-
tity thieves, and privacy concerns; whether you think of traditional knowledge, patents
on genes, the death of scholarly publishing, or compulsory licensing of AIDS medicine;
whether you think of MoveOn.org or net neutrality or YouTubethe issues raised by these
phenomena can be better understood by looking carefully at the emergence of Free
Software. [PAGEx]

Why? Because it is in Free Software and its history that the issues raisedfrom intel- 6

lectual property and piracy to online political advocacy and ”social” softwarewere first
figured out and confronted. Free Softwares roots stretch back to the 1970s and criss-
cross the histories of the personal computer and the Internet, the peaks and troughs of
the information-technology and software industries, the transformation of intellectual
property law, the innovation of organizations and ”virtual” collaboration, and the rise
of networked social movements. Free Software does not explain why these various
changes have occurred, but rather how individuals and groups are responding: by cre-
ating new things, new practices, and new forms of life. It is these practices and forms
of lifenot the software itselfthat are most significant, and they have in turn served as
templates that others can use and transform: practices of sharing source code, con-
ceptualizing openness, writing copyright (and copyleft) licenses, coordinating collabo-
ration, and proselytizing for all of the above. There are explanations aplenty for why
things are the way they are: its globalization, its the network society, its an ideology
of transparency, its the virtualization of work, its the new flat earth, its Empire. We are
drowning in the why, both popular and scholarly, but starving for the how.

Understanding how Free Software works is not just an academic pursuit but an experi- 7

ence that transforms the lives and work of participants involved. Over the last decade,
in fieldwork with software programmers, lawyers, entrepreneurs, artists, activists, and
other geeks I have repeatedly observed that understanding how Free Software works
results in a revelation. Peopleeven (or, perhaps, especially) those who do not consider
themselves programmers, hackers, geeks, or technophilescome out of the experience
with something like religion, because Free Software is all about the practices, not about
the ideologies and goals that swirl on its surface. Free Software and its creators and
users are not, as a group, antimarket or anticommercial; they are not, as a group,
anti-intellectual property or antigovernment; they are not, as a group, pro- or anti- any-
thing. In fact, they are not really a group at all: not a corporation or an organization;
not an NGO or a government agency; not a professional society or an informal horde
of hackers; not a movement or a research project.

Free Software is, however, public; it is about making things public. This fact is key to 8

Two Bits Christopher M. Kelty 3

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

comprehending its cultural significance, its [PAGExi] appeal, and its proliferation. Free
Software is public in a particular way: it is a self-determining, collective, politically in-
dependent mode of creating very complex technical objects that are made publicly
and freely available to everyonea ”commons,” in common parlance. It is a practice of
working through the promises of equality, fairness, justice, reason, and argument in
a domain of technically complex software and networks, and in a context of powerful,
lopsided laws about intellectual property. The fact that something public in this grand
sense emerges out of practices so seemingly arcane is why the first urge of many con-
verts is to ask: how can Free Software be ”ported” to other aspects of life, such as
movies, music, science or medicine, civil society, and education? It is this proselytizing
urge and the ease with which the practices are spread that make up the cultural sig-
nificance of Free Software. For better or for worse, we may all be using Free Software
before we know it.

Two Bits Christopher M. Kelty 4

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Acknowledgements 9

Anthropology is dependent on strangers who become friends and colleaguesstrangers 10

who contribute the very essence of the work. In my case, these strangers are also
hyperaware of issues of credit, reputation, acknowledgment, reuse, and modification
of ideas and things. Therefore, the list is extensive and detailed.

Sean Doyle and Adrian Gropper opened the doors to this project, providing unparalleled 11

insight, hospitality, challenge, and curiosity. Axel Roch introduced me to Volker Grass-
muck, and to much else. Volker Grassmuck introduced me to Berlins Free Software
world and invited me to participate in the Wizards of OS conferences. Udhay Shankar
introduced me to almost everyone I know, sometimes after the fact. Shiv Sastry helped
me find lodging in Bangalore at his Aunt Anasuya Sastrys house, which is called ”Silicon
Valley” and which was truly a lovely place to stay. Bharath Chari and Ram Sundaram
let me haunt their office and cat-5 cables [PAGExiv] during one of the more turbulent
periods of their careers. Glenn Otis Brown visited, drank, talked, invited, challenged,
entertained, chided, encouraged, drove, was driven, and gave and received advice.
Ross Reedstrom welcomed me to the Rice Linux Users Group and to Connexions. Brent
Hendricks did yeomans work, suffering my questions and intrusions. Geneva Henry,
Jenn Drummond, Chuck Bearden, Kathy Fletcher, Manpreet Kaur, Mark Husband, Max
Starkenberg, Elvena Mayo, Joey King, and Joel Thierstein have been welcoming and en-
thusiastic at every meeting. Sid Burris has challenged and respected my work, which
has been an honor. Rich Baraniuk listens to everything I say, for better or for worse;
he is a magnificent collaborator and friend.

James Boyle has been constantly supportive, for what feels like very little return on 12

investment. Very few people get to read and critique and help reshape the argument
and structure of a book, and to appear in it as well. Mario Biagioli helped me see the
intricate strategy described in chapter 6. Stefan Helmreich read early drafts and trans-
formed my thinking about networks. Manuel DeLanda explained the term assemblage
to me. James Faubion corrected my thinking in chapter 2, helped me immeasurably
with the Protestants, and has been an exquisitely supportive colleague and depart-
ment chair. Mazyar Lotfalian and Melissa Cefkin provided their apartment and library,
in which I wrote large parts of chapter 1. Matt Price and Michelle Murphy have listened
patiently to me construct and reconstruct versions of this book for at least six years.
Tom and Elizabeth Landecker provided hospitality and stunningly beautiful surround-
ings in which to rewrite parts of the book. Lisa Gitelman read carefully and helped
explain issues about documentation and versioning that I discuss in chapter 4. Matt
Ratto read and commented on chapters 4-7, convinced me to drop a useless distinc-
tion, and to clarify the conclusion to chapter 7. Shay David provided strategic insights
about openness from his own work and pushed me to explain the point of recursive
publics more clearly. Biella Coleman has been a constant interlocutor on the issues in
this bookher contributions are too deep, too various, and too thorough to detail. Her
own work on Free Software and hackers has been a constant sounding board and guide,
and it has been a pleasure to work together on our respective texts. Kim Fortun helped
me figure it all out. [PAGExv]

Two Bits Christopher M. Kelty 5

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

George Marcus hired me into a fantastic anthropology department and has had im- 13

mense faith in this project throughout its lifetime. Paul Rabinow, Stephen Collier, and
Andrew Lakoff have provided an extremely valuable settingthe Anthropology of the
Contemporary Research Collaboratorywithin which the arguments of this book devel-
oped in ways they could not have as a solitary project. Joe Dumit has encouraged
and prodded and questioned and brainstormed and guided and inspired. Michael Fis-
cher is the best mentor and advisor ever. He has read everything, has written much
that precedes and shapes this work, and has been an unwavering supporter and friend
throughout.

Tish Stringer, Michael Powell, Valerie Olson, Ala Alazzeh, Lina Dib, Angela Rivas, An- 14

thony Potoczniak, Ayla Samli, Ebru Kayaalp, Michael Kriz, Erkan Saka, Elise McCarthy,
Elitza Ranova, Amanda Randall, Kris Peterson, Laura Jones, Nahal Naficy, Andrea Frolic,
and Casey ODonnell make my job rock. Scott McGill, Sarah Ellenzweig, Stephen Col-
lier, Carl Pearson, Dan Wallach, Tracy Volz, Rich Doyle, Ussama Makdisi, Elora She-
habbudin, Michael Morrow, Taryn Kinney, Gregory Kaplan, Jane Greenberg, Hajime
Nakatani, Kirsten Ostherr, Henning Schmidgen, Jason Danziger, Kayte Young, Nicholas
King, Jennifer Fishman, Paul Drueke, Roberta Bivins, Sherri Roush, Stefan Timmermans,
Laura Lark, and Susann Wilkinson either made Houston a wonderful place to be or pro-
vided an opportunity to escape it. I am especially happy that Thom Chivens has done
both and more.

The Center for the Study of Cultures provided me with a Faculty Fellowship in the fall of 15

2003, which allowed me to accomplish much of the work in conceptualizing the book.
The Harvard History of Science Department and the MIT Program in History, Anthropol-
ogy, and Social Studies of Science and Technology hosted me in the spring of 2005,
allowing me to write most of chapters 7, 8, and 9. Rice University has been extremely
generous in all respects, and a wonderful place to work. Im most grateful for a junior
sabbatical that gave me the chance to complete much of this book. John Hoffman gra-
ciously and generously allowed the use of the domain name twobits.net, in support
of Free Software. Ken Wissoker, Courtney Berger, and the anonymous reviewers for
Duke University Press have made this a much, much better book than when I started.
[PAGExvi]

My parents, Ted and Anne, and my brother, Kevin, have always been supportive and 16

loving; though they claim to have no idea what I do, I nonetheless owemy small success
to their constant support. Hannah Landecker has read and reread and rewritten every
part of this work; she has made it and me better, and I love her dearly for it. Last, but
not least, my new project, Ida Jane Kelty Landecker, is much cuter and smarter and
funnier than Two Bits, and I love her for distracting me from it.

Two Bits Christopher M. Kelty 6

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Introduction 17

Introduction 18

Around 1998 Free Software emerged from a happily subterranean and obscure exis- 19

tence stretching back roughly twenty years. At the very pinnacle of the dotcom boom,
Free Software suddenly populated the pages of mainstream business journals, entered
the strategy and planning discussions of executives, confounded the radar of political
leaders and regulators around the globe, and permeated the consciousness of a gen-
eration of technophile teenagers growing up in the 1990s wondering how people ever
lived without e-mail. Free Software appeared to be something shocking, something that
economic history suggested could never exist: a practice of creating softwaregood soft-
warethat was privately owned, but freely and publicly accessible. Free Software, as its
ambiguous moniker suggests, is both free from constraints and free of charge. Such
characteristics seem to violate economic logic and the principles of private ownership
and individual autonomy, yet there are tens of [pg2] millions of people creating this soft-
ware and hundreds of millions more using it. Why? Why now? And most important:
how?

Free Software is a set of practices for the distributed collaborative creation of software 20

source code that is then made openly and freely available through a clever, unconven-
tional use of copyright law.1 But it is much more: Free Software exemplifies a consider-
able reorientation of knowledge and power in contemporary societya reorientation of
power with respect to the creation, dissemination, and authorization of knowledge in
the era of the Internet. This book is about the cultural significance of Free Software, and
by cultural I mean much more than the exotic behavioral or sartorial traits of software
programmers, fascinating though they be. By culture, I mean an ongoing experimental
system, a space of modification and modulation, of figuring out and testing; culture is
an experiment that is hard to keep an eye on, one that changes quickly and sometimes
starkly. Culture as an experimental system crosses economies and governments, net-
worked social spheres, and the infrastructure of knowledge and power within which our
world functions todayor fails to. Free Software, as a cultural practice, weaves together
a surprising range of places, objects, and people; it contains patterns, thresholds, and
repetitions that are not simple or immediately obvious, either to the geeks who make
Free Software or to those who want to understand it. It is my goal in this book to reveal
some of those complex patterns and thresholds, both historically and anthropologically,
and to explain not just what Free Software is but also how it has emerged in the recent
past and will continue to change in the near future.2

1A Note on Terminology: There is still debate about how to refer to Free Software, which is also known
as Open Source Software. The scholarly community has adopted either FOSS or FLOSS (or F/LOSS): the
former stands for the Anglo-American Free and Open Source Software; the latter stands for the
continental Free, Libre and Open Source Software. Two Bits sticks to the simple term Free Software to
refer to all of these things, except where it is specifically necessary to differentiate two or more names,
or to specify people or events so named. The reason is primarily aesthetic and political, but Free
Software is also the older term, as well as the one that includes issues of moral and social order. I
explain in chapter 3 why there are two terms.

2Michael M. J. Fischer, ”Culture and Cultural Analysis as Experimental Systems.”

Two Bits Christopher M. Kelty 7

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The significance of Free Software extends far beyond the arcane and detailed technical 21

practices of software programmers and ”geeks” (as I refer to them herein). Since about
1998, the practices and ideas of Free Software have extended into new realms of life
and creativity: from software to music and film to science, engineering, and education;
from national politics of intellectual property to global debates about civil society; from
UNIX to Mac OS X and Windows; from medical records and databases to international
disease monitoring and synthetic biology; from Open Source to open access. Free
Software is no longer only about softwareit exemplifies a more general reorientation of
power and knowledge.

The terms Free Software and Open Source dont quite capture the extent of this reorien- 22

tation or their own cultural significance. They [pg3] refer, quite narrowly, to the practice
of creating softwarean activity many people consider to be quite far from their expe-
rience. However, creating Free Software is more than that: it includes a unique com-
bination of more familiar practices that range from creating and policing intellectual
property to arguing about the meaning of ”openness” to organizing and coordinating
people and machines across locales and time zones. Taken together, these practices
make Free Software distinct, significant, and meaningful both to those who create it
and to those who take the time to understand how it comes into being.

In order to analyze and illustrate the more general cultural significance of Free Soft- 23

ware and its consequences, I introduce the concept of a ”recursive public.” A recursive
public is a public that is vitally concerned with the material and practical maintenance
and modification of the technical, legal, practical, and conceptual means of its own
existence as a public; it is a collective independent of other forms of constituted power
and is capable of speaking to existing forms of power through the production of ac-
tually existing alternatives. Free Software is one instance of this concept, both as it
has emerged in the recent past and as it undergoes transformation and differentiation
in the near future. There are other instances, including those that emerge from the
practices of Free Software, such as Creative Commons, the Connexions project, and
the Open Access movement in science. These latter instances may or may not be Free
Software, or even ”software” projects per se, but they are connected through the same
practices, and what makes them significant is that they may also be ”recursive publics”
in the sense I explore in this book. Recursive publics, and publics generally, differ from
interest groups, corporations, unions, professions, churches, and other forms of orga-
nization because of their focus on the radical technological modifiability of their own
terms of existence. In any public there inevitably arises a moment when the question
of how things are said, who controls the means of communication, or whether each and
everyone is being properly heard becomes an issue. A legitimate public sphere is one
that gives outsiders a way in: they may or may not be heard, but they do not have to
appeal to any authority (inside or outside the organization) in order to have a voice.3

3So, for instance, when a professional society founded on charters and ideals for membership and
qualification speaks as a public, it represents its members, as when the American Medical Association
argues for or against changes to Medicare. However, if a new groupsay, of nursesseeks not only to
participate in this discussionwhich may be possible, even welcomedbut to change the structure of
representation in order to give themselves status equal to doctors, this change is impossible, for it goes
against the very aims and principles of the society. Indeed, the nurses will be urged to form their own

Two Bits Christopher M. Kelty 8

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Such publics are not inherently modifiable, but are made soand maintainedthrough the
practices of participants. It is possible for Free Software as we know it to cease to be
public, or to become just one more settled [pg4] form of power, but my focus is on the
recent past and near future of something that is (for the time being) public in a radical
and novel way.

The concept of a recursive public is not meant to apply to any and every instance 24

of a publicit is not a replacement for the concept of a ”public sphere”but is intended
rather to give readers a specific and detailed sense of the non-obvious, but persistent
threads that form the warp and weft of Free Software and to analyze similar and related
projects that continue to emerge from it as novel and unprecedented forms of publicity
and political action.

At first glance, the thread tying these projects together seems to be the Internet. And 25

indeed, the history and cultural significance of Free Software has been intricately mixed
up with that of the Internet over the last thirty years. The Internet is a unique platfor-
man environment or an infrastructurefor Free Software. But the Internet looks the way
it does because of Free Software. Free Software and the Internet are related like figure
and ground or like system and environment; neither are stable or unchanging in and
of themselves, and there are a number of practical, technical, and historical places
where the two are essentially indistinguishable. The Internet is not itself a recursive
public, but it is something vitally important to that public, something about which such
publics care deeply and act to preserve. Throughout this book, I will return to these
three phenomena: the Internet, a heterogeneous and diverse, though singular, infras-
tructure of technologies and uses; Free Software, a very specific set of technical, legal,
and social practices that now require the Internet; and recursive publics, an analytic
concept intended to clarify the relation of the first two.

Both the Internet and Free Software are historically specific, that is, not just any old 26

new media or information technology. But the Internet is many, many specific things
to many, many specific people. As one reviewer of an early manuscript version of this
book noted, ”For most people, the Internet is porn, stock quotes, Al Jazeera clips of
executions, Skype, seeing pictures of the grandkids, porn, never having to buy another
encyclopedia, MySpace, e-mail, online housing listings, Amazon, Googling potential

society, not to join that of the doctors, a proposition which gives the lie to the existing structures of
power. By contrast, a public is an entity that is less controlled and hence more agonistic, such that
nurses might join, speak, and insist on changing the terms of debate, just as patients, scientists, or
homeless people might. Their success, however, depends entirely on the force with which their actions
transform the focus and terms of the public. Concepts of the public sphere have been roundly critiqued
in the last twenty years for presuming that such ”equality of access” is sufficient to achieve
representation, when in fact other contextual factors (race, class, sex) inherently weight the
representative power of different participants. But these are two different and overlapping problems:
one cannot solve the problem of pernicious, invisible forms of inequality unless one first solves the
problem of ensuring a certain kind of structural publicity. It is precisely the focus on maintaining
publicity for a recursive public, over against massive and powerful corporate and governmental
attempts to restrict it, that I locate as the central struggle of Free Software. Gender certainly influences
who gets heard within Free Software, for example, but it is a mistake to focus on this inequality at the
expense of the larger, more threatening form of political failure that Free Software addresses. And I think
there are plenty of geeksman, woman and animalwho share this sentiment.

Two Bits Christopher M. Kelty 9

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

romantic interests, etc. etc.” It is impossible to explain all of these things; the meaning
and significance of the proliferation of digital pornography is a very different concern
than that of the fall of the print encyclopedia [pg5] and the rise of Wikipedia. Yet certain
underlying practices relate these diverse phenomena to one another and help explain
why they have occurred at this time and in this technical, legal, and social context. By
looking carefully at Free Software and its modulations, I suggest, one can come to a
better understanding of the changes affecting pornography, Wikipedia, stock quotes,
and many other wonderful and terrifying things.4

Two Bits has three parts. Part I of this book introduces the reader to the concept of 27

recursive publics by exploring the lives, works, and discussions of an international com-
munity of geeks brought together by their shared interest in the Internet. Chapter 1
asks, in an ethnographic voice, ”Why do geeks associate with one another?” The an-
swertold via the story of Napster in 2000 and the standards process at the heart of the
Internetis that they are making a recursive public. Chapter 2 explores the words and
attitudes of geeks more closely, focusing on the strange stories they tell (about the
Protestant Reformation, about their practical everyday polymathy, about progress and
enlightenment), stories that make sense of contemporary political economy in some-
times surprising ways. Central to part I is an explication of the ways in which geeks
argue about technology but also argue with and through it, by building, modifying, and
maintaining the very software, networks, and legal tools within which and by which
they associate with one another. It is meant to give the reader a kind of visceral sense
of why certain arrangements of technology, organization, and lawspecifically that of
the Internet and Free Softwareare so vitally important to these geeks.

Part II takes a step back from ethnographic engagement to ask, ”What is Free Software 28

and why has it emerged at this point in history?” Part II is a historically detailed portrait
of the emergence of Free Software beginning in 1998-99 and stretching back in time as
far as the late 1950s; it recapitulates part I by examining Free Software as an exemplar
of a recursive public. The five chapters in part II tell a coherent historical story, but each
is focused on a separate component of Free Software. The stories in these chapters
help distinguish the figure of Free Software from the ground of the Internet. The diver-
sity of technical practices, economic concerns, information technologies, and legal and
organizational practices is huge, and these five chapters distinguish and describe the
specific practices in their historical contexts and settings: practices of [pg6] proselytizing
and arguing, of sharing, porting, and forking source code, of conceptualizing openness
and open systems, of creating Free Software copyright, and of coordinating people and
source code.

Part III returns to ethnographic engagement, analyzing two related projects inspired 29

by Free Software which modulate one or more of the five components discussed in
part II, that is, which take the practices as developed in Free Software and experiment

4Wikipedia is perhaps the most widely known and generally familiar example of what this book is
about. Even though it is not identified as such, it is in fact a Free Software project and a ”modulation” of
Free Software as I describe it here. The non-technically inclined reader might keep Wikipedia in mind as
an example with which to follow the argument of this book. I will return to it explicitly in part 3. However,
for better or for worse, there will be no discussion of pornography.

Two Bits Christopher M. Kelty 10

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

with making something new and different. The two projects are Creative Commons, a
nonprofit organization that creates copyright licenses, and Connexions, a project to de-
velop an online scholarly textbook commons. By tracing the modulations of practices
in detail, I ask, ”Are these projects still Free Software?” and ”Are these projects still
recursive publics?” The answer to the first questions reveals how Free Softwares flexi-
ble practices are influencing specific forms of practice far from software programming,
while the answer to the second question helps explain how Free Software, Creative
Commons, Connexions, and projects like them are all related, strategic responses to
the reorientation of power and knowledge. The conclusion raises a series of questions
intended to help scholars looking at related phenomena.

Recursive Publics and the Reorientation of Power and Knowledge 30

Governance and control of the creation and dissemination of knowledge have changed 31

considerably in the context of the Internet over the last thirty years. Nearly all kinds of
media are easier to produce, publish, circulate, modify, mash-up, remix, or reuse. The
number of such creations, circulations, and borrowings has exploded, and the tools of
knowledge creation and circulationsoftware and networkshave also become more and
more pervasively available. The results have also been explosive and include anxieties
about validity, quality, ownership and control, moral panics galore, and new concerns
about the shape and legitimacy of global ”intellectual property” systems. All of these
concerns amount to a reorientation of knowledge and power that is incomplete and
emergent, and whose implications reach directly into the heart of the legitimacy, cer-
tainty, reliability and especially the finality and temporality of [pg7] the knowledge and
infrastructures we collectively create. It is a reorientation at once more specific and
more general than the grand diagnostic claims of an ”information” or ”network” soci-
ety, or the rise of knowledge work or knowledge-based economies; it is more specific
because it concerns precise and detailed technical and legal practices, more general
because it is a cultural reorientation, not only an economic or legal one.

Free Software exemplifies this reorientation; it is not simply a technical pursuit but also 32

the creation of a ”public,” a collective that asserts itself as a check on other constituted
forms of powerlike states, the church, and corporationsbut which remains independent
of these domains of power.5 Free Software is a response to this reorientation that
has resulted in a novel form of democratic political action, a means by which publics
can be created and maintained in forms not at all familiar to us from the past. Free
Software is a public of a particular kind: a recursive public. Recursive publics are publics
concerned with the ability to build, control, modify, and maintain the infrastructure
that allows them to come into being in the first place and which, in turn, constitutes
their everyday practical commitments and the identities of the participants as creative
and autonomous individuals. In the cases explored herein, that specific infrastructure
includes the creation of the Internet itself, as well as its associated tools and structures,

5Although the term public clearly suggests private as its opposite, Free Software is not anticommercial.
A very large amount of money, both real and notional, is involved in the creation of Free Software. The
term recursive [PAGE313] market could also be used, in order to emphasize the importance (especially
during the 1990s) of the economic features of the practice. The point is not to test whether Free Software
is a ”public” or a ”market,” but to construct a concept adequate to the practices that constitute it.

Two Bits Christopher M. Kelty 11

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

such as Usenet, e-mail, the World Wide Web (www), UNIX and UNIX-derived operating
systems, protocols, standards, and standards processes. For the last thirty years, the
Internet has been the subject of a contest in which Free Software has been both a
central combatant and an important architect.

By calling Free Software a recursive public, I am doing two things: first, I am drawing 33

attention to the democratic and political significance of Free Software and the Internet;
and second, I am suggesting that our current understanding (both academic and col-
loquial) of what counts as a self-governing public, or even as ”the public,” is radically
inadequate to understanding the contemporary reorientation of knowledge and power.
The first case is easy to make: it is obvious that there is something political about Free
Software, but most casual observers assume, erroneously, that it is simply an ideo-
logical stance and that it is anti-intellectual property or technolibertarian. I hope to
show how geeks do not start with ideologies, but instead come to them through their
involvement in the [pg8] practices of creating Free Software and its derivatives. To be
sure, there are ideologues aplenty, but there are far more people who start out thinking
of themselves as libertarians or liberators, but who become something quite different
through their participation in Free Software.

The second case is more complex: why another contribution to the debate about the 34

public and public spheres? There are two reasons I have found it necessary to invent,
and to attempt to make precise, the concept of a recursive public: the first is to signal
the need to include within the spectrum of political activity the creation, modification,
and maintenance of software, networks, and legal documents. Coding, hacking, patch-
ing, sharing, compiling, and modifying of software are forms of political action that now
routinely accompany familiar political forms of expression like free speech, assembly,
petition, and a free press. Such activities are expressive in ways that conventional polit-
ical theory and social science do not recognize: they can both express and ”implement”
ideas about the social and moral order of society. Software and networks can express
ideas in the conventional written sense as well as create (express) infrastructures that
allow ideas to circulate in novel and unexpected ways. At an analytic level, the con-
cept of a recursive public is a way of insisting on the importance to public debate of
the unruly technical materiality of a political order, not just the embodied discourse
(however material) about that order. Throughout this book, I raise the question of how
Free Software and the Internet are themselves a public, as well as what that public
actually makes, builds, and maintains.

The second reason I use the concept of a recursive public is that conventional publics 35

have been described as ”self-grounding,” as constituted only through discourse in the
conventional sense of speech, writing, and assembly.6 Recursive publics are ”recur-
sive” not only because of the ”self-grounding” of commitments and identities but also
because they are concerned with the depth or strata of this self-grounding: the layers
of technical and legal infrastructure which are necessary for, say, the Internet to exist
as the infrastructure of a public. Every act of self-grounding that constitutes a public
relies in turn on the existence of a medium or ground through which communication is
possiblewhether face-to-face speech, epistolary communication, or net-based assem-

6See, for example, Warner, Publics and Counterpublics, 67-74.

Two Bits Christopher M. Kelty 12

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

blyand recursive publics relentlessly question the status of these media, suggesting
[pg9] that they, too, must be independent for a public to be authentic. At each of these
layers, technical and legal and organizational decisions can affect whether or not the in-
frastructure will allow, or even ensure, the continued existence of the recursive publics
that are concerned with it. Recursive publics independence from power is not abso-
lute; it is provisional and structured in response to the historically constituted layering
of power and control within the infrastructures of computing and communication.

For instance, a very important aspect of the contemporary Internet, and one that has 36

been fiercely disputed (recently under the banner of ”net neutrality”), is its singularity:
there is only one Internet. This was not an inevitable or a technically determined out-
come, but the result of a contest in which a series of decisions were made about layers
ranging from the very basic physical configuration of the Internet (packet-switched net-
works and routing systems indifferent to data types), to the standards and protocols
that make it work (e.g., TCP/IP or DNS), to the applications that run on it (e-mail, www,
ssh). The outcome of these decisions has been to privilege the singularity of the Inter-
net and to champion its standardization, rather than to promote its fragmentation into
multiple incompatible networks. These same kinds of decisions are routinely discussed,
weighed, and programmed in the activity of various Free Software projects, as well as
its derivatives. They are, I claim, decisions embedded in imaginations of order that are
simultaneously moral and technical.

By contrast, governments, corporations, nongovernmental organizations (NGOs), and 37

other institutions have plenty of reasonsprofit, security, controlto seek to fragment the
Internet. But it is the check on this power provided by recursive publics and especially
the practices that now make up Free Software that has kept the Internet whole to date.
It is a check on power that is by no means absolute, but is nonetheless rigorously and
technically concerned with its legitimacy and independence not only from state-based
forms of power and control, but from corporate, commercial, and nongovernmental
power as well. To the extent that the Internet is public and extensible (including the
capability of creating private subnetworks), it is because of the practices discussed
herein and their culmination in a recursive public.

Recursive publics respond to governance by directly engaging in, maintaining, and 38

often modifying the infrastructure they seek, as a [pg10] public, to inhabit and extendand
not only by offering opinions or protesting decisions, as conventional publics do (in
most theories of the public sphere). Recursive publics seek to create what might be
understood, enigmatically, as a constantly ”self-leveling” level playing field. And it
is in the attempt to make the playing field self-leveling that they confront and resist
forms of power and control that seek to level it to the advantage of one or another large
constituency: state, government, corporation, profession. It is important to understand
that geeks do not simply want to level the playing field to their advantagethey have
no affinity or identity as such. Instead, they wish to devise ways to give the playing
field a certain kind of agency, effected through the agency of many different humans,
but checked by its technical and legal structure and openness. Geeks do not wish to
compete qua capitalists or entrepreneurs unless they can assure themselves that (qua
public actors) that they can compete fairly. It is an ethic of justice shot through with an

Two Bits Christopher M. Kelty 13

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

aesthetic of technical elegance and legal cleverness.

The fact that recursive publics respond in this waythrough direct engagement and mod- 39

ificationis a key aspect of the reorientation of power and knowledge that Free Software
exemplifies. They are reconstituting the relationship between liberty and knowledge
in a technically and historically specific context. Geeks create and modify and argue
about licenses and source code and protocols and standards and revision control and
ideologies of freedom and pragmatism not simply because these things are inherently
or universally important, but because they concern the relationship of governance to
the freedom of expression and nature of consent. Source code and copyright licenses,
revision control and mailing lists are the pamphlets, coffeehouses, and salons of the
twenty-first century: Tischgesellschaften become Schreibtischgesellschaften.7

The ”reorientation of power and knowledge” has two key aspects that are part of the 40

concept of recursive publics: availability and modifiability (or adaptability). Availability
is a broad, diffuse, and familiar issue. It includes things like transparency, open gov-
ernance or transparent organization, secrecy and freedom of information, and open
access in science. Availability includes the business-school theories of ”disintermedi-
ation” and ”transparency and accountability” and the spread of ”audit culture” and
so-called neoliberal regimes of governance; it is just as often the subject of suspicion
as it is a kind of moral mandate, as in the case of open [pg11] access to scientific results
and publications.8 All of these issues are certainly touched on in detailed and practi-
cal ways in the creation of Free Software. Debates about the mode of availability of
information made possible in the era of the Internet range from digital-rights manage-
ment and copy protection, to national security and corporate espionage, to scientific
progress and open societies.

However, it is modifiability that is the most fascinating, and unnerving, aspect of the 41

reorientation of power and knowledge. Modifiability includes the ability not only to
accessthat is, to reuse in the trivial sense of using something without restrictionsbut
to transform it for use in new contexts, to different ends, or in order to participate di-
rectly in its improvement and to redistribute or recirculate those improvements within
the same infrastructures while securing the same rights for everyone else. In fact, the
core practice of Free Software is the practice of reuse and modification of software
source code. Reuse and modification are also the key ideas that projects modeled on
Free Software (such as Connexions and Creative Commons) see as their goal. Creative
Commons has as its motto ”Culture always builds on the past,” and they intend that
to mean ”through legal appropriation and modification.” Connexions, which allows au-
thors to create online bits and pieces of textbooks explicitly encourages authors to
reuse work by other people, to modify it, and to make it their own. Modifiability there-
fore raises a very specific and important question about finality. When is something
(software, a film, music, culture) finished? How long does it remain finished? Who
decides? Or more generally, what does its temporality look like, and how does that

7Habermas, The Structural Transformation of the Public Sphere, esp. 27-43.
8Critiques of the demand for availability and the putatively inherent superiority of transparency

include Coombe and Herman, ”Rhetorical Virtues” and ”Your Second Life?”; Christen, ”Gone Digital”;
and Anderson and Bowery, ”The Imaginary Politics of Access to Knowledge.”

Two Bits Christopher M. Kelty 14

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

temporality restructure political relationships? Such issues are generally familiar only
to historians and literary scholars who understand the transformation of canons, the
interplay of imitation and originality, and the theoretical questions raised, for instance,
in textual scholarship. But the contemporary meaning of modification includes both a
vast increase in the speed and scope of modifiability and a certain automation of the
practice that was unfamiliar before the advent of sophisticated, distributed forms of
software.

Modifiability is an oft-claimed advantage of Free Software. It can be updated, modi- 42

fied, extended, or changed to deal with other changing environments: new hardware,
new operating systems, unforeseen technologies, or new laws and practices. At an
infrastructural level, such modifiability makes sense: it is a response to [pg12] and an al-
ternative to technocratic forms of planning. It is a way of planning in the ability to plan
out; an effort to continuously secure the ability to deal with surprise and unexpected
outcomes; a way of making flexible, modifiable infrastructures like the Internet as safe
as permanent, inflexible ones like roads and bridges.

But what is the cultural significance of modifiability? What does it mean to plan in 43

modifiability to culture, to music, to education and science? At a clerical level, such a
question is obvious whenever a scholar cannot recover a document written in WordPer-
fect 2.0 or on a disk for which there are no longer disk drives, or when a library archive
considers saving both the media and the machines that read that media. Modifiability
is an imperative for building infrastructures that can last longer. However, it is not only
a solution to a clerical problem: it creates new possibilities and new problems for long-
settled practices like publication, or the goals and structure of intellectual-property
systems, or the definition of the finality, lifetime, monumentality, and especially, the
identity of a work. Long-settled, seemingly unassailable practiceslike the authority of
published books or the power of governments to control informationare suddenly con-
founded and denaturalized by the techniques of modifiability.

Over the last ten to fifteen years, as the Internet has spread exponentially and insinu- 44

ated itself into the most intimate practices of all kinds of people, the issues of availabil-
ity and modifiability and the reorientation of knowledge and power they signify have
become commonplace. As this has happened, the significance and practices associ-
ated with Free Software have also spreadand been modulated in the process. These
practices provide a material and meaningful starting point for an array of recursive
publics who play with, modulate, and transform them as they debate and build new
ways to share, create, license, and control their respective productions. They do not
all share the same goals, immediate or long-term, but by engaging in the technical,
legal, and social practices pioneered in Free Software, they do in fact share a ”social
imaginary” that defines a particular relationship between technology, organs of gover-
nance (whether state, corporate, or nongovernmental), and the Internet. Scientists in
a lab or musicians in a band; scholars creating a textbook or social movements con-
templating modes of organization and protest; government bureaucrats issuing data
or journalists investigating corruption; corporations that manage [pg13] personal data
or co-ops that monitor community developmentall these groups and others may find
themselves adopting, modulating, rejecting, or refining the practices that have made

Two Bits Christopher M. Kelty 15

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

up Free Software in the recent past and will do so in the near future.

Experiment and Modulation 45

What exactly is Free Software? This question is, perhaps surprisingly, an incredibly 46

common one in geek life. Debates about definition and discussions and denunciations
are ubiquitous. As an anthropologist, I have routinely participated in such discussions
and debates, and it is through my immediate participation that Two Bits opens. In
part I I tell stories about geeks, stories that are meant to give the reader that classic
anthropological sense of being thrown into another world. The stories reveal several
general aspects of what geeks talk about and how they do so, without getting into what
Free Software is in detail. I start in this way because my project started this way. I did
not initially intend to study Free Software, but it was impossible to ignore its emergence
andmanifest centrality to geeks. The debates about the definition of Free Software that
I participated in online and in the field eventually led me away from studying geeks per
se and turned me toward the central research concern of this book: what is the cultural
significance of Free Software?

In part II what I offer is not a definition of Free Software, but a history of how it came 47

to be. The story begins in 1998, with an important announcement by Netscape that it
would give away the source code to its main product, Netscape Navigator, and works
backward from this announcement into the stories of the UNIX operating system, ”open
systems,” copyright law, the Internet, and tools for coordinating people and code. To-
gether, these five stories constitute a description of how Free Software works as a prac-
tice. As a cultural analysis, these stories highlight just how experimental the practices
are, and how individuals keep track of and modulate the practices along the way.

Netscapes decision came at an important point in the life of Free Software. It was at just 48

this moment that Free Software was becoming aware of itself as a coherent movement
and not just a diverse amalgamation of projects, tools, or practices. Ironically, this [pg14]

recognition also betokened a split: certain parties started to insist that the movement
be called ”Open Source” software instead, to highlight the practical over the ideologi-
cal commitments of the movement. The proposal itself unleashed an enormous public
discussion about what defined Free Software (or Open Source). This enigmatic event,
in which a movement became aware of itself at the same time that it began to question
its mission, is the subject of chapter 3. I use the term movement to designate one of
the five core components of Free Software: the practices of argument and disagree-
ment about the meaning of Free Software. Through these practices of discussion and
critique, the other four practices start to come into relief, and participants in both Free
Software and Open Source come to realize something surprising: for all the ideological
distinctions at the level of discourse, they are doing exactly the same thing at the level
of practice. The affect-laden histrionics with which geeks argue about the definition of
what makes Free Software free or Open Source open can be matched only by the sober
specificity of the detailed practices they share.

The second component of Free Software is just such a mundane activity: sharing source 49

code (chapter 4). It is an essential and fundamentally routine practice, but one with
a history that reveals the goals of software portability, the interactions of commercial

Two Bits Christopher M. Kelty 16

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and academic software development, and the centrality of source code (and not only
of abstract concepts) in pedagogical settings. The details of ”sharing” source code also
form the story of the rise and proliferation of the UNIX operating system and its myriad
derivatives.

The third component, conceptualizing openness (chapter 5), is about the specific tech- 50

nical and ”moral” meanings of openness, especially as it emerged in the 1980s in the
computer industrys debates over ”open systems.” These debates concerned the cre-
ation of a particular infrastructure, including both technical standards and protocols
(a standard UNIX and protocols for networks), and an ideal market infrastructure that
would allow open systems to flourish. Chapter 5 is the story of the failure to achieve a
market infrastructure for open systems, in part due to a significant blind spot: the role
of intellectual property.

The fourth component, applying copyright (and copyleft) licenses (chapter 6), involves 51

the problem of intellectual property as it faced programmers and geeks in the late
1970s and early 1980s. In this [pg15] chapter I detail the story of the first Free Soft-
ware licensethe GNU General Public License (GPL)which emerged out of a controversy
around a very famous piece of software called EMACS. The controversy is coincident
with changing laws (in 1976 and 1980) and changing practices in the software indus-
trya general drift from trade secret to copyright protectionand it is also a story about
the vaunted ”hacker ethic” that reveals it in its native practical setting, rather than as
a rarefied list of rules.

The fifth component, the practice of coordination and collaboration (chapter 7), is the 52

most talked about: the idea of tens or hundreds of thousands of people volunteering
their time to contribute to the creation of complex software. In this chapter I show
how novel forms of coordination developed in the 1990s and how they worked in the
canonical cases of Apache and Linux; I also highlight how coordination facilitates the
commitment to adaptability (or modifiability) over against planning and hierarchy, and
how this commitment resolves the tension between individual virtuosity and the need
for collective control.

Taken together, these five components make up Free Softwarebut they are not a defi- 53

nition. Within each of these five practices, many similar and dissimilar activities might
reasonably be included. The point of such a redescription of the practices of Free Soft-
ware is to conceptualize them as a kind of collective technical experimental system.
Within each component are a range of differences in practice, from conventional to
experimental. At the center, so to speak, are the most common and accepted versions
of a practice; at the edges are more unusual or controversial versions. Together, the
components make up an experimental system whose infrastructure is the Internet and
whose ”hypotheses” concern the reorientation of knowledge and power.

For example, one can hardly have Free Software without source code, but it need not 54

be written in C (though the vast majority of it is); it can be written in Java or perl or TeX.
However, if one stretches the meaning of source code to include music (sheet music
as source and performance as binary), what happens? Is this still Free Software? What
happens when both the sheet and the performance are ”born digital”? Or, to take

Two Bits Christopher M. Kelty 17

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

a different example, Free Software requires Free Software licenses, but the terms of
these licenses are often changed and often heatedly discussed and vigilantly policed by
geeks. What degree of change removes a license [pg16] from the realm of Free Software
and why? How much flexibility is allowed?

Conceived this way, Free Software is a system of thresholds, not of classification; the ex- 55

citement that participants and observers sense comes from themodulation (experimen-
tation) of each of these practices and the subsequent discovery of where the thresholds
are. Many, many people have written their own ”Free Software” copyright licenses, but
only some of them remain within the threshold of the practice as defined by the system.
Modulations happen whenever someone learns how some component of Free Software
works and asks, ”Can I try these practices out in some other domain?”

The reality of constant modulation means that these five practices do not define Free 56

Software once and for all; they define it with respect to its constitution in the con-
temporary. It is a set of practices defined ”around the point” 1998-99, an intensive
coordinate space that allows one to explore Free Softwares components prospectively
and retrospectively: into the near future and the recent past. Free Software is a ma-
chine for charting the (re)emergence of a problematic of power and knowledge as it
is filtered through the technical realities of the Internet and the political and economic
configuration of the contemporary. Each of these practices has its own temporality of
development and emergence, but they have recently come together into this full house
called either Free Software or Open Source.9

Viewing Free Software as an experimental system has a strategic purpose in Two Bits. 57

It sets the stage for part III, wherein I ask what kinds of modulations might no longer
qualify as Free Software per se, but still qualify as recursive publics. It was around 2000
that talk of ”commons” began to percolate out of discussions about Free Software:
commons in educational materials, commons in biodiversity materials, commons in
music, text, and video, commons in medical data, commons in scientific results and
data.10 On the one hand, it was continuous with interest in creating ”digital archives”
or ”online collections” or ”digital libraries”; on the other hand, it was a conjugation of
the digital collection with the problems and practices of intellectual property. The very
term commonsat once a new name and a theoretical object of investigationwas meant
to suggest something more than simply a collection, whether of [pg17] digital objects or
anything else; it was meant to signal the public interest, collective management, and
legal status of the collection.11

9This description of Free Software could also be called an ”assemblage.” The most recent source for
this is Rabinow, Anthropos Today. The language of thresholds and intensities is most clearly developed
by Manuel DeLanda in A Thousand Years of Non-linear History and in Intensive Science and Virtual
Philosophy. The term problematization, from Rabinow (which he channels from Foucault), is a synonym
for the phrase ”reorientation of knowledge and power” as I use it here.
10See Kelty, ”Cultures Open Sources.”
11The genealogy of the term commons has a number of sources. An obvious source is Garrett Hardins
famous 1968 article ”The Tragedy of the Commons.” James Boyle has done more than anyone to specify
the term, especially during a 2001 conference on the public domain, which included the inspired
guest-list juxtaposition of the appropriation-happy musical collective Negativland and the dame of
”commons” studies, Elinor Ostrom, whose book Governing the Commons has served as a certain
inspiration for thinking about commons versus public domains. Boyle, for his part, has ceaselessly

Two Bits Christopher M. Kelty 18

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

In part III, I look in detail at two ”commons” understood as modulations of the com- 58

ponent practices of Free Software. Rather than treating commons projects simply as
metaphorical or inspirational uses of Free Software, I treat them as modulations, which
allows me to remain directly connected to the changing practices involved. The goal of
part III is to understand how commons projects like Connexions and Creative Commons
breach the thresholds of these practices and yet maintain something of the same ori-
entation. What changes, for instance, have made it possible to imagine new forms of
free content, free culture, open source music, or a science commons? What happens
as new communities of people adopt and modulate the five component practices? Do
they also become recursive publics, concerned with the maintenance and expansion
of the infrastructures that allow them to come into being in the first place? Are they
concerned with the implications of availability and modifiability that continue to un-
fold, continue to be figured out, in the realms of education, music, film, science, and
writing?

The answers in part III make clear that, so far, these concerns are alive and well in 59

the modulations of Free Software: Creative Commons and Connexions each struggle to
come to terms with new ways of creating, sharing, and reusing content in the contem-
porary legal environment, with the Internet as infrastructure. Chapters 8 and 9 provide
a detailed analysis of a technical and legal experiment: a modulation that begins with
source code, but quickly requires modulations in licensing arrangements and forms of
coordination. It is here that Two Bits provides the most detailed story of figuring out set
against the background of the reorientation of knowledge and power. This story is, in
particular, one of reuse, of modifiability and the problems that emerge in the attempt
to build it into the everyday practices of pedagogical writing and cultural production of
myriad forms. Doing so leads the actors involved directly to the question of the exis-
tence and ontology of norms: norms of scholarly production, borrowing, reuse, citation,
reputation, and ownership. These last chapters open up questions about the stability of
modern knowledge, not as an archival or a legal problem, but as a social and normative
one; they raise questions about the invention and control of norms, and the forms of
life that may emerge from these [pg18] practices. Recursive publics come to exist where
it is clear that such invention and control need to be widely shared, openly examined,
and carefully monitored.

Three Ways of Looking at Two Bits 60

Two Bits makes three kinds of scholarly contributions: empirical, methodological, and 61

theoretical. Because it is based largely on fieldwork (which includes historical and
archival work), these three contributions are often mixed up with each other. Fieldwork,
especially in cultural and social anthropology in the last thirty years, has come to be

pushed the ”environmental” metaphor of speaking for the public domain as environmentalists of the
1960s and 1970s spoke for the environment (see Boyle, ”The Second Enclosure Movement and the
Construction of the Public Domain” and ”A Politics of Intellectual Property”). The term commons is useful
in this context precisely because it distinguishes the ”public domain” as an imagined object of pure
public transaction and coordination, as opposed to a ”commons,” which can consist of privately owned
things/spaces that are managed in such a fashion that they effectively function like a ”public domain” is
imagined to (see Boyle, ”The Public Domain”; Hess and Ostrom, Understanding Knowledge as a
Commons).

Two Bits Christopher M. Kelty 19

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

understood less and less as one particular tool in a methodological toolbox, and more
and more as distinctive mode of epistemological encounter.12 The questions I began
with emerged out of science and technology studies, but they might end up making
sense to a variety of fields, ranging from legal studies to computer science.

Empirically speaking, the actors in my stories are figuring something out, something 62

unfamiliar, troubling, imprecise, and occasionally shocking to everyone involved at
different times and to differing extents.13 There are two kinds of figuring-out stories:
the contemporary ones in which I have been an active participant (those of Connexions
and Creative Commons), and the historical ones conducted through ”archival” research
and rereading of certain kinds of texts, discussions, and analyses-at-the-time (those of
UNIX, EMACS, Linux, Apache, and Open Systems). Some are stories of technical figuring
out, but most are stories of figuring out a problem that appears to have emerged.
Some of these stories involve callow and earnest actors, some involve scheming and
strategy, but in all of them the figuring out is presented ”in the making” and not as
something that can be conveniently narrated as obvious and uncontested with the
benefit of hindsight. Throughout this book, I tell stories that illustrate what geeks are
like in some respects, but, more important, that show them in the midst of figuring
things outa practice that can happen both in discussion and in the course of designing,
planning, executing, writing, debugging, hacking, and fixing.

There are also myriad ways in which geeks narrate their own actions to themselves 63

and others, as they figure things out. Indeed, [pg19] there is no crisis of representing
the other here: geeks are vocal, loud, persistent, and loquacious. The superalterns can
speak for themselves. However, such representations should not necessarily be taken
as evidence that geeks provide adequate analytic or critical explanations of their own
actions. Some of the available writing provides excellent description, but distracting
analysis. Eric Raymonds work is an example of such a combination.14 Over the course
of my fieldwork, Raymonds work has always been present as an excellent guide to the
practices and questions that plague geeksmuch like a classic ”principal informant” in
anthropology. And yet his analyses, which many geeks subscribe to, are distracting.
They are fanciful, occasionally enjoyable and enlighteningbut they are not about the
cultural significance of Free Software. As such I am less interested in treating geeks
as natives to be explained and more interested in arguing with them: the people in
Two Bits are a sine qua non of the ethnography, but they are not the objects of its
analysis.15

12Marcus and Fischer, Anthropology as Cultural Critique; Marcus and Clifford, Writing Culture; Fischer,
Emergent Forms of Life and the Anthropological Voice; Marcus, Ethnography through Thick and Thin;
Rabinow, Essays on the Anthropology of Reason and Anthropos Today.
13The language of ”figuring out” has its immediate source in the work of Kim Fortun, ”Figuring Out
Ethnography.” Fortuns work refines two other sources, the work of Bruno Latour in Science in Action and
that of Hans-Jorg Rheinberger in Towards History of Epistemic Things. Latour describes the difference
between ”science made” and ”science in the making” and how the careful analysis of new objects can
reveal how they come to be. Rheinberger extends this approach through analysis of the detailed
practices involved in figuring out a new object or a new processpractices which participants cannot quite
name or explain in precise terms until after the fact.
14Raymond, The Cathedral and the Bazaar.
15The literature on ”virtual communities,” ”online communities,” the culture of hackers and geeks, or

Two Bits Christopher M. Kelty 20

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Because the stories I tell here are in fact recent by the standards of historical schol- 64

arship, there is not much by way of comparison in terms of the empirical material. I
rely on a number of books and articles on the history of the early Internet, especially
Janet Abbates scholarship and the single historical work on UNIX, Peter Saluss A Quar-
ter Century of Unix.16 There are also a couple of excellent journalistic works, such as
Glyn Moodys Rebel Code: Inside Linux and the Open Source Revolution (which, like
Two Bits, relies heavily on the novel accessibility of detailed discussions carried out on
public mailing lists). Similarly, the scholarship on Free Software and its history is just
starting to establish itself around a coherent set of questions.17

Methodologically, Two Bits provides an example of how to study distributed phenomena 65

ethnographically. Free Software and the Internet are objects that do not have a single
geographic site at which they can be studied. Hence, this work is multisited in the
simple sense of having multiple sites at which these objects were investigated: Boston,
Bangalore, Berlin, Houston. It was conducted among particular people, projects, and
companies and at conferences and online gatherings too numerous to list, but it has
not been a study of a single Free Software project distributed around the globe. In all of
these places and projects the geeks I worked with were randomly and loosely affiliated
people with diverse lives and histories. Some [pg20] identified as Free Software hackers,
but most did not. Some had never met each other in real life, and some had. They
represented multiple corporations and institutions, and came from diverse nations, but
they nonetheless shared a certain set of ideas and idioms that made it possible for me

the social study of information technology offers important background information, although it is not
the subject of this book. A comprehensive review of work in anthropology and related disciplines is
Wilson and Peterson, ”The Anthropology of Online Communities.” Other touchstones are Miller and
Slater, The Internet; Carla Freeman, High Tech and High Heels in the Global Economy; Hine, Virtual
Ethnography; Kling, Computerization and Controversy; Star, The Cultures of Computing; Castells, The
Rise of the Network Society; Boczkowski, Digitizing the News. Most social-science work in information
technology has dealt with questions of inequality and the so-called digital divide, an excellent overview
being DiMaggio et al., ”From Unequal Access to Differentiated Use.” Beyond works in anthropology and
science studies, a number of works from various other disciplines have recently taken up similar themes,
especially Adrian MacKenzie, Cutting Code; Galloway, Protocol; Hui Kyong Chun, Control and Freedom;
and Liu, Laws of Cool. By contrast, if social-science studies of information technology are set against a
background of historical and ethnographic studies of ”figuring out” problems of specific information
technologies, software, or networks, then the literature is sparse. Examples of anthropology and science
studies of figuring out include Barry, Political Machines; Hayden, When Nature Goes Public; and Fortun,
Advocating Bhopal. Matt Ratto has also portrayed this activity in Free Software in his dissertation, ”The
Pressure of Openness.”
16In addition to Abbate and Salus, see Norberg and ONeill, Transforming Computer Technology;
Naughton, A Brief History of the Future; Hafner, Where Wizards Stay Up Late; Waldrop, The Dream
Machine; Segaller, Nerds 2.0.1. For a classic autodocumentation of one aspect of the Internet, see
Hauben and Hauben, Netizens.
17Kelty, ”Cultures Open Sources”; Coleman, ”The Social Construction of Freedom”; Ratto, ”The Pressure
of Openness”; Joseph Feller et al., Perspectives [pg315] on Free and Open Source Software; see also
⌜ http://freesoftware.mit.edu/ ⌟ , organized by Karim Lakhani, which is a large collection of work on Free
Software projects. Early work in this area derived both from the writings of practitioners such as
Raymond and from business and management scholars who noticed in Free Software a remarkable,
surprising set of seeming contradictions. The best of these works to date is Steven Weber, The Success
of Open Source. Webers conclusions are similar to those presented here, and he has a kind of
cryptoethnographic familiarity (that he does not explicitly avow) with the actors and practices. Yochai
Benklers Wealth of Networks extends and generalizes some of Webers argument.

Two Bits Christopher M. Kelty 21

http://freesoftware.mit.edu/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

to travel from Boston to Berlin to Bangalore and pick up an ongoing conversation with
different people, in very different places, without missing a beat.

The study of distributed phenomena does not necessarily imply the detailed, local study 66

of each instance of a phenomenon, nor does it necessitate visiting every relevant ge-
ographical siteindeed, such a project is not only extremely difficult, but confuses map
and territory. As Max Weber put it, ”It is not the actual inter-connection of things but
the conceptual inter-connection of problems that define the scope of the various sci-
ences.”18 The decisions about where to go, whom to study, and how to think about
Free Software are arbitrary in the precise sense that because the phenomena are so
widely distributed, it is possible to make any given node into a source of rich and de-
tailed knowledge about the distributed phenomena itself, not only about the local site.
Thus, for instance, the Connexions project would probably have remained largely un-
known to me had I not taken a job in Houston, but it nevertheless possesses precise,
identifiable connections to the other sites and sets of people that I have studied, and is
therefore recognizable as part of this distributed phenomena, rather than some other.
I was actively looking for something like Connexions in order to ask questions about
what was becoming of Free Software and how it was transforming. Had there been no
Connexions in my back yard, another similar field site would have served instead.

It is in this sense that the ethnographic object of this study is not geeks and not any 67

particular project or place or set of people, but Free Software and the Internet. Even
more precisely, the ethnographic object of this study is ”recursive publics”except that
this concept is also the work of the ethnography, not its preliminary object. I could
not have identified ”recursive publics” as the object of the ethnography at the outset,
and this is nice proof that ethnographic work is a particular kind of epistemological en-
counter, an encounter that requires considerable conceptual work during and after the
material labor of fieldwork, and throughout the material labor of writing and rewriting,
in order to make sense of and reorient it into a question that will have looked delib-
erate and [pg21] answerable in hindsight. Ethnography of this sort requires a long-term
commitment and an ability to see past the obvious surface of rapid transformation to
a more obscure and slower temporality of cultural significance, yet still pose questions
and refine debates about the near future.19 Historically speaking, the chapters of part
II can be understood as a contribution to a history of scientific infrastructureor perhaps
to an understanding of large-scale, collective experimentation.20 The Internet and Free
18Max Weber, ”Objectivity in the Social Sciences and Social Policy,” 68.
19Despite what might sound like a ”shoot first, ask questions later” approach, the design of this project
was in fact conducted according to specific methodologies. The most salient is actor-network theory:
Latour, Science in Action; Law, ”Technology and Heterogeneous Engineering”; Callon, ”Some Elements
of a Sociology of Translation”; Latour, Pandoras Hope; Latour, Re-assembling the Social; Callon, Laws of
the Markets; Law and Hassard, Actor Network Theory and After. Ironically, there have been no
actor-network studies of networks, which is to say, of particular information and communication
technologies such as the Internet. The confusion of the word network (as an analytical and
methodological term) with that of network (as a particular configuration of wires, waves, software, and
chips, or of people, roads, and buses, or of databases, names, and diseases) means that it is necessary
to always distinguish this-network-here from any-network-whatsoever. My approach shares much with
the ontological questions raised in works such as Law, Aircraft Stories; Mol, The Body Multiple; Cussins,
”Ontological Choreography”; Charis Thompson, Making Parents; and Dumit, Picturing Personhood.
20I understand a concern with scientific infrastructure to begin with Steve Shapin and Simon Schaffer in

Two Bits Christopher M. Kelty 22

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Software are each an important practical transformation that will have effects on the
practice of science and a kind of complex technical practice for which there are few
existing models of study.

A methodological note about the peculiarity of my subject is also in order. The Attentive 68

Reader will note that there are very few fragments of conventional ethnographic mate-
rial (i.e., interviews or notes) transcribed herein. Where they do appear, they tend to
be ”publicly available”which is to say, accessible via the Internetand are cited as such,
with as much detail as necessary to allow the reader to recover them. Conventional
wisdom in both anthropology and history has it that what makes a study interesting,
in part, is the work a researcher has put into gathering that which is not already avail-
able, that is, primary sources as opposed to secondary sources. In some cases I provide
that primary access (specifically in chapters 2, 8, and 9), but in many others it is now
literally impossible: nearly everything is archived. Discussions, fights, collaborations,
talks, papers, software, articles, news stories, history, old software, old software man-
uals, reminiscences, notes, and drawingsit is all saved by someone, somewhere, and,
more important, often made instantly available by those who collect it. The range of
conversations and interactions that count as private (either in the sense of disappear-
ing from written memory or of being accessible only to the parties involved) has shrunk
demonstrably since about 1981.

Such obsessive archiving means that ethnographic research is stratified in time. Ques- 69

tions that would otherwise have required ”being there” are much easier to research af-
ter the fact, and this is most evident in my reconstruction from sources on USENET and
mailing lists in chapters 1, 6, and 7. The overwhelming availability of quasi-archival ma-
terials is something I refer to, in a play on the EMACS text editor, as ”self-documenting
history.” That is to say, one of the activities that geeks love to participate in, and
encourage, is the creation, analysis, and archiving of their own roles in the [pg22] devel-
opment of the Internet. No matter how obscure or arcane, it seems most geeks have a
well-developed sense of possibilitytheir contribution could turn out to have been trans-
formative, important, originary. What geeks may lack in social adroitness, they make
up for in archival hubris.

Finally, the theoretical contribution of Two Bits consists of a refinement of debates about 70

publics, public spheres, and social imaginaries that appear troubled in the context of
the Internet and Free Software. Terminology such as virtual community, online commu-
nity, cyberspace, network society, or information society are generally not theoretical
constructs, but ways of designating a subgenre of disciplinary research having to do

Leviathan and the Air Pump, but the genealogy is no doubt more complex. It includes Shapin, The Social
History of Truth; Biagioli, Galileo, Courtier; Galison, How Experiments End and Image and Logic; Daston,
Biographies of Scientific Objects; Johns, The Nature of the Book. A whole range of works explore the
issue of scientific tools and infrastructure: Kohler, Lords of the Fly; Rheinberger, Towards a History of
Epistemic Things; Landecker, Culturing Life; Keating and Cambrosio, Biomedical Platforms. Bruno
Latours ”What Rules of Method for the New Socio-scientific Experiments” provides one example of
where science studies might go with these questions. Important texts on the subject of technical
infrastructures include Walsh and Bayma, ”Computer Networks and Scientific Work”; Bowker and Star,
Sorting Things Out; Edwards, The [pg316] Closed World; Misa, Brey, and Feenberg, Modernity and
Technology; Star and Ruhleder, ”Steps Towards an Ecology of Infrastructure.”

Two Bits Christopher M. Kelty 23

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

with electronic networks. The need for a more precise analysis of the kinds of associ-
ation that take place on and through information technology is clear; the first step is
to make precise which information technologies and which specific practices make a
difference.

There is a relatively large and growing literature on the Internet as a public sphere, but 71

such literature is generally less concerned with refining the concept through research
and more concerned with pronouncing whether or not the Internet fits Habermass def-
inition of the bourgeois public sphere, a definition primarily conceived to account for
the eighteenth century in Britain, not the twenty-first-century Internet.21 The facts of
technical and human life, as they unfold through the Internet and around the practices
of Free Software, are not easy to cram into Habermass definition. The goal of Two Bits
is not to do so, but to offer conceptual clarity based in ethnographic fieldwork.

The key texts for understanding the concept of recursive publics are the works of Haber- 72

mas, Charles Taylors Modern Social Imaginaries, and Michael Warners The Letters of the
Republic and Publics and Counterpublics. Secondary texts that refine these notions are
John Deweys The Public and Its Problems and Hannah Arendts The Human Condition.
Here it is not the public sphere per se that is the center of analysis, but the ”ideas of
modern moral and social order” and the terminology of ”modern social imaginaries.”22
I find these concepts to be useful as starting points for a very specific reason: to distin-
guish the meaning of moral order from the meaning of moral and technical order that
I explore with respect to geeks. I do not seek to test the concept of social imaginary
here, but to build something on top of it. [pg23]

If recursive public is a useful concept, it is because it helps elaborate the general ques- 73

tion of the ”reorientation of knowledge and power.” In particular it is meant to bring
into relief the ways in which the Internet and Free Software are related to the political
economy of modern society through the creation not only of new knowledge, but of new
infrastructures for circulating, maintaining, and modifying it. Just as Warners book The
Letters of the Republic was concerned with the emergence of the discourse of repub-
licanism and the simultaneous development of an American republic of letters, or as
Habermass analysis was concerned with the relationship of the bourgeois public sphere
to the democratic revolutions of the eighteenth century, this book asks a similar series
of questions: how are the emergent practices of recursive publics related to emerging
relations of political and technical life in a world that submits to the Internet and its
forms of circulation? Is there still a role for a republic of letters, much less a species
of public that can seriously claim independence and autonomy from other constituted
forms of power? Are Habermass pessimistic critiques of the bankruptcy of the public
sphere in the twentieth century equally applicable to the structures of the twenty-first
century? Or is it possible that recursive publics represent a reemergence of strong, au-
thentic publics in a world shot through with cynicism and suspicion about mass media,
21Dreyfus, On the Internet; Dean, ”Why the Net Is Not a Public Sphere.”
22In addition, see Lippmann, The Phantom Public; Calhoun, Habermas and the Public Sphere; Latour
and Weibel, Making Things Public. The debate about social imaginaries begins alternately with Benedict
Andersons Imagined Communities or with Cornelius Castoriadiss The Imaginary Institution of Society;
see also Chatterjee, ”A Response to Taylors Modes of Civil Society”; Gaonkar, ”Toward New Imaginaries”;
Charles Taylor, ”Modes of Civil Society” and Sources of the Self.

Two Bits Christopher M. Kelty 24

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

verifiable knowledge, and enlightenment rationality? [PAGE 24: BLANK]

Two Bits Christopher M. Kelty 25

https://twobits.net
https://kelty.org/

Part I the internet 74

The concept of the state, like most concepts which are introduced by ”The,” is 75

both too rigid and too tied up with controversies to be of ready use. It is a concept
which can be approached by a flank movement more easily than by a frontal attack.
The moment we utter the words ”The State” a score of intellectual ghosts rise to
obscure our vision. Without our intention and without our notice, the notion of
”The State” draws us imperceptibly into a consideration of the logical relationship
of various ideas to one another, and away from the facts of human activity. It is
better, if possible, to start from the latter and see if we are not led thereby into
an idea of something which will turn out to implicate the marks and signs which
characterize political behavior.

- john dewey, The Public and Its Problems 76

Two Bits Christopher M. Kelty 26

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

1.Geeks and Recursive Publics 77

Since about 1997, I have been living with geeks online and off. I have been drawn from 78

Boston to Bangalore to Berlin to Houston to Palo Alto, from conferences and workshops
to launch parties, pubs, and Internet Relay Chats (IRCs). All along the way in my re-
search questions of commitment and practice, of ideology and imagination have arisen,
even as the exact nature of the connections between these people and ideas remained
obscure to me: what binds geeks together? As my fieldwork pulled me from a Boston
start-up company that worked with radiological images to media labs in Berlin to young
entrepreneurial elites in Bangalore, my logistical question eventually developed into an
analytical concept: geeks are bound together as a recursive public.

How did I come to understand geeks as a public constituted around the technical and 79

moral ideas of order that allow them to associate with one another? Through this ques-
tion, one can start to understand the larger narrative of Two Bits: that of Free Software
[pg28] as an exemplary instance of a recursive public and as a set of practices that allow
such publics to expand and spread. In this chapter I describe, ethnographically, the
diverse, dispersed, and as an exemplary instance of a recursive public and as a set
of practices that allow such publics to expand and spread. In this chapter I describe,
ethnographically, the diverse, dispersed, and novel forms of entanglements that bind
geeks together, and I construct the concept of a recursive public in order to explain
these entanglements.

A recursive public is a public that is constituted by a shared concern for maintaining 80

the means of association through which they come together as a public. Geeks find
affinity with one another because they share an abiding moral imagination of the tech-
nical infrastructure, the Internet, that has allowed them to develop and maintain this
affinity in the first place. I elaborate the concept of recursive public (which is not a
term used by geeks) in relation to theories of ideology, publics, and public spheres
and social imaginaries. I illustrate the concept through ethnographic stories and exam-
ples that highlight geeks imaginations of the technical and moral order of the Internet.
These stories include those of the fate of Amicas, a Boston-based healthcare start-up,
between 1997 and 2003, of my participation with new media academics and activists
in Berlin in 1999-2001, and of the activities of a group of largely Bangalore-based infor-
mation technology (IT) professionals on and offline, especially concerning the events
surrounding the peer-topeer file sharing application Napster in 2000-2001.

The phrase ”moral and technical order” signals both technologyprincipally software, 81

hardware, networks, and protocolsand an imagination of the proper order of collective
political and commercial action, that is, how economy and society should be ordered
collectively. Recursive publics are just as concerned with the moral order of markets as
they are with that of commons; they are not anticommercial or antigovernment. They
exist independent of, and as a check on, constituted forms of power, which include
markets and corporations. Unlike other concepts of a public or of a public sphere, ”re-
cursive public” captures the fact that geeks principal mode of associating and acting
is through the medium of the Internet, and it is through this medium that a recursive
public can come into being in the first place. The Internet is not itself a public sphere, a

Two Bits Christopher M. Kelty 27

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

public, or a recursive public, but a complex, heterogeneous infrastructure that consti-
tutes and constrains geeks everyday practical commitments, their ability to ”become
public” or to compose a common world. As such, their participation qua recursive
publics structures their identity as creative and autonomous [pg29] individuals. The fact
that the geeks described here have been brought together by mailing lists and e-mail,
bulletin-board services and Web sites, books and modems, air travel and academia,
and cross-talking and cross-posting in ways that were not possible before the Internet
is at the core of their own reasoning about why they associate with each other. They
are the builders and imaginers of this space, and the space is what allows them to build
and imagine it.

Why recursive? I call such publics recursive for two reasons: first, in order to signal 82

that this kind of public includes the activities of making, maintaining, and modifying
software and networks, as well as the more conventional discourse that is thereby en-
abled; and second, in order to suggest the recursive ”depth” of the public, the series of
technical and legal layersfrom applications to protocols to the physical infrastructures
of waves and wiresthat are the subject of this making, maintaining, and modifying. The
first of these characteristics is evident in the fact that geeks use technology as a kind
of argument, for a specific kind of order: they argue about technology, but they also ar-
gue through it. They express ideas, but they also express infrastructures through which
ideas can be expressed (and circulated) in new ways. The second of these characteris-
ticsregarding layersis reflected in the ability of geeks to immediately see connections
between, for example, Napster (a user application) and TCP/IP (a network protocol) and
to draw out implications for both of them. By connecting these layers, Napster comes
to represent the Internet in miniature. The question of where these layers stop (hard-
ware? laws and regulations? physical constants? etc.) circumscribes the limits of the
imagination of technical and moral order shared by geeks.

Above all, ”recursive public” is a conceptnot a thing. It is intended to make distinctions, 83

allow comparison, highlight salient features, and relate two diverse kinds of things (the
Internet and Free Software) in a particular historical context of changing relations of
power and knowledge. The stories in this chapter (and throughout the book) give some
sense of how geeks interact and what they do technically and legally, but the concept
of a recursive public provides a way of explaining why geeks (or people involved in
Free Software or its derivatives) associate with one another, as well as a way of test-
ing whether other similar cases of contemporary, technologically mediated affinity are
similarly structured. [pg30]

Recursion 84

Recursion (or ”recursive”) is a mathematical concept, one which is a standard fea- 85

ture of any education in computer programming. The definition from the Oxford
English Dictionary reads: ”2. a. Involving or being a repeated procedure such that
the required result at each step except the last is given in terms of the result(s)
of the next step, until after a finite number of steps a terminus is reached with an
outright evaluation of the result.” It should be distinguished from simple iteration
or repetition. Recursion is always subject to a limit and is more like a process of
repeated deferral, until the last step in the process, at which point all the deferred

Two Bits Christopher M. Kelty 28

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

steps are calculated and the result given.

Recursion is powerful in programming because it allows for the definition of proce- 86

dures in terms of themselvessomething that seems at first counterintuitive. So, for
example,

; 87

otherwise return n times factorial of n-1;
(defun (factorial n) ; This is the name of the function and its input n.
(if (=n 1) ; This is the final limit, or recursive depth
1 ; if n=1, then return 1
(* n (factorial (- n 1)))))
;
call the procedure from within itself, and
;
calculate the next step of the result before
;
giving an answer.1

In Two Bits a recursive public is one whose existence (which consists solely in 88

address through discourse) is only possible through discursive and technical
reference to the means of creating this public. Recursiveness is always contingent
on a limit which determines the depth of a recursive procedure. So, for instance,
a Free Software project may depend on some other kind of software or operating
system, which may in turn depend on particular open protocols or a particular
process, which in turn depend on certain kinds of hardware that implement them.
The ”depth” of recursion is determined by the openness necessary for the project
itself.
James Boyle has also noted the recursive nature, in particular, of Free Software: 89

”Whats more, and this is a truly fascinating twist, when the production process
does need more centralized coordination, some governance that guides how the
sticky modular bits are put together, it is at least theoretically possible that we
can come up with the control system in exactly the same way. In this sense,
distributed production is potentially recursive.”2
1. Abelson and Sussman, The Structure and Interpretation of Computer Programs, 90

30.
2. Boyle, ”The Second Enclosure Movement and the Construction of the Public 91

Domain,” 46. [pg31]

From the Facts of Human Activity 92

Boston, May 2003. Starbucks. Sean and Adrian are on their way to pick me up for 93

dinner. Ive already had too much coffee, so I sit at the window reading the paper.
Eventually Adrian calls to find out where I am, I tell him, and he promises to show up
in fifteen minutes. I get bored and go outside to wait, watch the traffic go by. More or

Two Bits Christopher M. Kelty 29

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

less right on time (only post-dotcom is Adrian ever on time), Seans new blue VW
Beetle rolls into view. Adrian jumps out of the passenger seat and into the back, and I
get in. Sean has been driving for a little over a year. He seems confident, cautious,
but meanders through the streets of Cambridge. We are destined for Winchester, a
township on the Charles River, in order to go to an Indian restaurant that one of
Seans friends has recommended. When I ask how they are doing, they say, ”Good,
good.” Adrian offers, ”Well, Seans better than he has been in two years.” ”Really?” I
say, impressed.
Sean says, ”Well, happier than at least the last year. I, well, let me put it this way: 94

forgive me father for I have sinned, I still have unclean thoughts about some of the
upper management in the company, I occasionally think they are not doing things in
the best interest of the company, and I see them as self-serving and sometimes wish
them ill.” In this rolling blue confessional Sean describes some of the people who I am
familiar with whom he now tries very hard not to think about. I look at him and say,
”Ten Hail Marys and ten Our Fathers, and you will be absolved, my child.” Turning to
Adrian, I ask, ”And what about you?” Adrian continues the joke: ”I, too, have sinned. I
have reached the point where I can see absolutely nothing good coming of this
company but that I can keep my investments in it long enough to pay for my
childrens college tuition.” I say, ”You, my son, I cannot help.” Sean says, ”Well, funny
thing about tainted money . . . there just taint enough of it.”
I am awestruck. When I met Sean and Adrian, in 1997, their start-up company, 95

Amicas, was full of spit, with five employees working out of Adrians living room and
big plans to revolutionize the medical-imaging world. They had connived to get
Massachusetts General Hospital to install their rudimentary system and let it compete
with the big corporate sloths that normally stalked back offices: General Electric,
Agfa, Siemens. It was these behemoths, according to Sean and Adrian, that were
bilking hospitals [pg32] and healthcare providers with promises of cure-all technologies
and horribly designed ”silos,” ”legacy systems,” and other closed-system monsters of
corporate IT harkening back to the days of IBM mainframes. These beasts obviously
did not belong to the gleaming future of Internet-enabled scalability. By June of 2000,
Amicas had hired new ”professional” management, moved to Watertown, and grown
to about a hundred employees. They had achieved their goal of creating an
alternative Picture Archiving and Communication System (PACS) for use in hospital
radiology departments and based on Internet standards.
At that point, in the spring of 2000, Sean could still cheerfully introduce me to his new 96

bossthe same man he would come to hate, inasmuch as Sean hates anyone. But by
2002 he was frustrated by the extraordinary variety of corner-cutting and, more
particularly, by the complacency with which management ignored his
recommendations and released software that was almost certainly going to fail later,
if not sooner. Sean, who is sort of permanently callow about things corporate, could
find no other explanation than that the new management was evil.
But by 2003 the company had succeeded, having grown to more than 200 employees 97

and established steady revenue and a stable presence throughout the healthcare
world. Both Sean and Adrian were made richnot wildly rich, but rich enoughby its

Two Bits Christopher M. Kelty 30

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

success. In the process, however, it also morphed into exactly what Sean and Adrian
had created it in order to fight: a slothlike corporate purveyor of promises and broken
software. Promises Adrian had made and software Sean had built. The failure of
Amicas to transform healthcare was a failure too complex and technical for most of
America to understand, but it rested atop the success of Amicas in terms more readily
comprehensible: a growing company making profit. Adrian and Sean had started the
company not to make money, but in order to fix a broken healthcare system; yet the
system stayed broken while they made money.
In the rolling confessional, Sean and Adrian did in fact see me, however jokingly, as a 98

kind of redeemer, a priest (albeit of an order with no flock) whose judgment of the
affairs past was essential to their narration of their venture as a success, a failure, or
as an unsatisfying and complicated mixture of both. I thought about this strange
moment of confession, of the combination of recognition and denial, of Adrians new
objectification of the company as an [pg33] investment opportunity, and of Seans
continuing struggle to make his life and his work harmonize in order to produce good
in the world. Only the promise of the next project, the next mission (and the
ostensible reason for our dinner meeting) could possibly have mitigated the
emotional disaster that their enterprise might otherwise be. Seans and Adrians
endless, arcane fervor for the promise of new technologies did not cease, even given
the quotidian calamities these technologies leave in their wake. Their faith was
strong, and continuously tested.
Adrians and Seans passion was not for moneythough money was a powerful drugit 99

was for the Internet: for the ways in which the Internet could replace the existing
infrastructure of hospitals and healthcare providers, deliver on old promises of
telemedicine and teleradiology, and, above all, level a playing field systematically
distorted and angled by corporate and government institutions that sought secrecy
and private control, and stymied progress. In healthcare, as Adrian repeatedly
explained to me, this skewed playing field was not only unfair but malicious and
irresponsible. It was costing lives. It slowed the creation and deployment of
technologies and solutions that could lower costs and thus provide more healthcare
for more people. The Internet was not part of the problem; it was part of the solution
to the problems that ailed 1990s healthcare.
At the end of our car trip, at the Indian restaurant in Winchester, I learned about their 100

next scheme, a project called MedCommons, which would build on the ideals of Free
Software and give individuals a way to securely control and manage their own
healthcare data. The rhetoric of commons and the promise of the Internet as an
infrastructure dominated our conversation, but the realities of funding and the
question of whether MedCommons could be pursued without starting another
company remained unsettled. I tried to imagine what form a future confession might
take.

Geeks and Their Internets 101

Sean and Adrian are geeks. They are entrepreneurs and idealists in different ways, a 102

Two Bits Christopher M. Kelty 31

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

sometimes paradoxical combination. They are certainly [pg34] obsessed with
technology, but especially with the Internet, and they clearly distinguish themselves
from others who are obsessed with technology of just any sort. They arent quite
representativethey do not stand in for all geeksbut the way they think about the
Internet and its possibilities might be. Among the rich story of their successes and
failures, one might glimpse the outlines of a question: where do their sympathies lie?
Who are they with? Who do they recognize as being like them? What might draw
them together with other geeks if not a corporation, a nation, a language, or a cause?
What binds these two geeks to any others?
Sean worked for the Federal Reserve in the 1980s, where he was introduced to UNIX, 103

C programming, EMACS, Usenet, Free Software, and the Free Software Foundation.
But he was not a Free Software hacker; indeed, he resisted my attempts to call him a
hacker at all. Nevertheless, he started a series of projects and companies with Adrian
that drew on the repertoire of practices and ideas familiar from Free Software,
including their MedCommons project, which was based more or less explicitly in the
ideals of Free Software. Adrian has a degree in medicine and in engineering, and is a
serial entrepreneur, with Amicas being his biggest successand throughout the last ten
years has attended all manner of conferences and meetings devoted to Free Software,
Open Source, open standards, and so on, almost always as the lone representative
from healthcare. Both graduated from the MIT (Sean in economics, Adrian in
engineering), one of the more heated cauldrons of the Internet and the storied home
of hackerdom, but neither were MIT hackers, nor even computer-science majors.
Their goals in creating a start-up rested on their understanding of the Internet as an 104

infrastructure: as a standardized infrastructure with certain extremely powerful
properties, not the least of which was its flexibility. Sean and Adrian talked endlessly
about open systems, open standards, and the need for the Internet to remain open
and standardized. Adrian spoke in general terms about how it would revolutionize
healthcare; Sean spoke in specific terms about how it structured the way Amicass
software was being designed and written. Both participated in standards committees
and in the online and offline discussions that are tantamount to policymaking in the
Internet world. The company they created was a ”virtual” company, that is, built on
tools that depended on the Internet and allowed employees to manage and work
from a variety of locations, though not without frustration, of course: Sean waited
years for broadband access in his home, and the hospitals they served [pg35] hemmed
themselves in with virtual private networks, intranets, and security firewalls that
betrayed the promises of openness that Sean and Adrian heralded.
The Internet was not the object of their work and lives, but it did represent in detail a 105

kind of moral or social order embodied in a technical system and available to
everyone to use as a platform whereby they might compete to improve and innovate
in any realm. To be sure, although not all Internet entrepreneurs of the 1990s saw the
Internet in the same way, Sean and Adrian were hardly alone in their vision.
Something about the particular way in which they understood the Internet as
representing a moral ordersimultaneously a network, a market, a public, and a
technologywas shared by a large group of people, those who I now refer to simply as
geeks.

Two Bits Christopher M. Kelty 32

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The term geek is meant to be inclusive and to index the problematic of a recursive 106

public. Other terms may be equally useful, but perhaps semantically overdetermined,
most notably hacker, which regardless of its definitional range, tends to connote
someone subversive and/or criminal and to exclude geek-sympathetic entrepreneurs
and lawyers and activists.23 Geek is meant to signal, like the public in ”recursive
public,” that geeks stand outside power, at least in some aspects, and that they are
not capitalists or technocrats, even if they start businesses or work in government or
industry.24 Geek is meant to signal a mode of thinking and working, not an identity; it
is a mode or quality that allows people to find each other, for reasons other than the
fact that they share an office, a degree, a language, or a nation.
Until the mid-1990s, hacker, geek, and computer nerd designated a very specific 107

type: programmers and lurkers on relatively underground networks, usually college
students, computer scientists, and ”amateurs” or ”hobbyists.” A classic mock
self-diagnostic called the Geek Code, by Robert Hayden, accurately and humorously
detailed the various ways in which one could be a geek in 1996UNIX/ Linux skills,
love/hate of Star Trek, particular eating and clothing habitsbut as Hayden himself
points out, the geeks of the early 1990s exist no longer. The elite subcultural,
relatively homogenous group it once was has been overrun: ”The Internet of 1996
was still a wild untamed virgin paradise of geeks and eggheads unpopulated by script
kiddies, and the denizens of AOL. When things changed, I seriously lost my way. I
mean, all the geek that was the Internet [pg36] was gone and replaced by Xfiles
buzzwords and politicians passing laws about a technology they refused to
comprehend.”25

For the purists like Hayden, geeks were there first, and they understood something, 108

lived in a way, that simply cannot be comprehended by ”script kiddies” (i.e.,
teenagers who perform the hacking equivalent of spray painting or cow tipping),
crackers, or AOL users, all of whom are despised by Hayden-style geeks as unskilled
users who parade around the Internet as if they own it. While certainly elitist, Hayden
23For the canonical story, see Levy, Hackers. Hack referred to (and still does) a clever use of
technology, usually unintended by the maker, to achieve some task in an elegant manner. The term has
been successfully redefined by the mass media to refer to computer users who break into and commit
criminal acts on corporate or government or personal computers connected to a network. Many
self-identified hackers insist that the criminal element be referred to as crackers (see, in particular, the
entries on ”Hackers,” ”Geeks” and ”Crackers” in The Jargon File, ⌜ http://www.catb.org/ esr/jargon/ ⌟ , also
published as Raymond, The New Hackers Dictionary). On the subject of definitions and the cultural and
ethical characteristics of hackers, see Coleman, ”The Social Construction of Freedom,” chap. 2.
24One example of the usage of geek is in Star, The Cultures of Computing. Various denunciations (e.g.,
Barbrook and Cameron, ”The California Ideology”; Borsook, Technolibertarianism) tend to focus on
journalistic accounts of an ideology that has little to do with what hackers, geeks, and entrepreneurs
actually make. A more relevant categorical distinction than that between hackers and geeks is that
between geeks and technocrats; in the case of technocrats, the ”anthropology of technocracy” is
proposed as the study of the limits of technical rationality, in particular the forms through which
”planning” creates ”gaps in the form that serve as targets of intervention” (Riles, ”Real Time,” 393).
Riless ”technocrats” are certainly not the ”geeks” I portray here (or at least, if they are, it is only in their
frustrating day jobs). Geeks do have libertarian, specifically Hayekian or Feyerabendian leanings, but
are more likely to see technical failures not as failures of planning, but as bugs, inefficiencies, or
occasionally as the products of human hubris or stupidity that is born of a faith in planning.
25See The Geek Code, ⌜ http://www.geekcode.com/ ⌟ .

Two Bits Christopher M. Kelty 33

http://www.catb.org/~esr/jargon/
http://www.geekcode.com/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

captures the distinction between those who are legitimately allowed to call
themselves geeks (or hackers) and those who arent, a distinction that is often
formulated recursively, of course: ”You are a hacker when another hacker calls you a
hacker.”
However, since the explosive growth of the Internet, geek has become more common 109

a designation, and my use of the term thus suggests a role that is larger than
programmer/hacker, but not as large as ”all Internet users.” Despite Haydens
frustration, geeks are still bound together as an elite and can be easily distinguished
from ”AOL users.” Some of the people I discuss would not call themselves geeks, and
some would. Not all are engineers or programmers: I have met businessmen, lawyers,
activists, bloggers, gastroenterologists, anthropologists, lesbians, schizophrenics,
scientists, poets, people suffering from malaria, sea captains, drug dealers, and
people who keep lemurs, many of whom refer to themselves as geeks, some of the
time.26 There are also lawyers, politicians, sociologists, and economists who may not
refer to themselves as geeks, but who care about the Internet just as other geeks do.
By contrast ”users” of the Internet, even those who use it eighteen out of twenty-four
hours in a day to ship goods and play games, are not necessarily geeks by this
characterization.

Operating Systems and Social Systems 110

Berlin, November 1999. I am in a very hip club in Mitte called WMF. Its about eight 111

oclockfive hours too early for me to be a hipster, but the context is extremely cool.
WMF is in a hard-to-find, abandoned building in the former East; it is partially
converted, filled with a mixture of new and old furnishings, video projectors, speakers,
makeshift bars, and dance-floor lighting. A crowd of around fifty people lingers amid
smoke and Becks beer bottles, [pg37] sitting on stools and chairs and sofas and the
floor. We are listening to an academic read a paper about Claude Shannon, the MIT
engineer credited with the creation of information theory. The author is smoking and
reading in German while the audience politely listens. He speaks for about seventy
minutes. There are questions and some perfunctory discussion. As the crowd breaks
up, I find myself, in halting German that quickly converts to English, having a series of
animated conversations about the GNU General Public License, the Debian Linux
Distribution, open standards in net radio, and a variety of things for which Claude
Shannon is the perfect ghostly technopaterfamilias, even if his seventy-minute
invocation has clashed heavily with the surroundings.
Despite my lame German, I still manage to jump deeply into issues that seem 112

extremely familiar: Internet standards and open systems and licensing issues and
namespaces and patent law and so on. These are not businesspeople, this is not a
start-up company. As I would eventually learn, there was even a certain disdain for
die Krawattenfaktor, the suit-and-tie factor, at these occasional, hybrid events hosted
by Mikro e.V., a nonprofit collective of journalists, academics, activists, artists, and

26Geeks are also identified often by the playfulness and agility with which they manipulate these labels
and characterizations. See Michael M. J. Fischer, ”Worlding Cyberspace” for an example.

Two Bits Christopher M. Kelty 34

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

others interested in new media, the Internet, and related issues. Mikros constituency
included people from Germany, Holland, Austria, and points eastward. They took
some pride in describing Berlin as ”the farthest East the West gets” and arranged for
a group photo in which, facing West, they stood behind the statue of Marx and Lenin,
who face East and look eternally at the iconic East German radio tower (Funkturm) in
Alexanderplatz. Mikros members are resolutely activist and see the issues around the
Internet-as-infrastructure not in terms of its potential for business opportunities, but
in urgently political and unrepentantly aesthetic termsterms that are nonetheless
similar to those of Sean and Adrian, from whom I learned the language that allows me
to mingle with the Mikro crowd at WMF. I am now a geek.
Before long, I am talking with Volker Grassmuck, founding member of Mikro and 113

organizer of the successful ”Wizards of OS” conference, held earlier in the year, which
had the very intriguing subtitle ”Operating Systems and Social Systems.” Grassmuck
is inviting me to participate in a planning session for the next WOS, held at the Chaos
Computer Congress, a hacker gathering that occurs each year in December in Berlin.
In the following months I will meet a huge number of people who seem,
uncharacteristically for artists [pg38] and activists, strangely obsessed with configuring
their Linux distributions or hacking the http protocol or attending German Parliament
hearings on copyright reform. The political lives of these folks have indeed mixed up
operating systems and social systems in ways that are more than metaphorical.

The Idea of Order at the Keyboard 114

If intuition can lead one from geek to geek, from start-up to nightclub, and across 115

countries, languages, and professional orientations, it can only be due to a shared set
of ideas of how things fit together in the world. These ideas might be ”cultural” in the
traditional sense of finding expression among a community of people who share
backgrounds, homes, nations, languages, idioms, ethnos, norms, or other designators
of belonging and co-presence. But because the Internetlike colonialism, satellite
broadcasting, and air travel, among other thingscrosses all these lines with abandon
that the shared idea of order is better understood as part of a public, or public sphere,
a vast republic of letters and media and ideas circulating in and through our thoughts
and papers and letters and conversations, at a planetary scope and scale.
”Public sphere” is an odd kind of thing, however. It is at once a conceptintended to 116

make sense of a space that is not the here and now, but one made up of writings,
ideas, and discussionsand a set of ideas that people have about themselves and their
own participation in such a space. I must be able to imagine myself speaking and
being spoken to in such a space and to imagine a great number of other people also
doing so according to unwritten rules we share. I dont need a complete theory, and I
dont need to call it a public sphere, but I must somehow share an idea of order with
all those other people who also imagine themselves participating in and subjecting
themselves to that order. In fact, if the public sphere exists as more than just a
theory, then it has no other basis than just such a shared imagination of order, an
imagination which provides a guide against which to make judgments and a map for

Two Bits Christopher M. Kelty 35

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

changing or achieving that order. Without such a shared imagination, a public sphere
is otherwise nothing more than a cacophony of voices and information, nothing more
than a stream of data, structured and formatted by and for machines, whether paper
or electronic. [pg39]

Charles Taylor, building on the work of Jürgen Habermas and Michael Warner, 117

suggests that the public sphere (both idea and thing) that emerged in the eighteenth
century was created through practices of communication and association that
reflected a moral order in which the public stands outside power and guides or checks
its operation through shared discourse and enlightened discussion. Contrary to the
experience of bodies coming together into a common space (Taylor calls them ”topical
spaces,” such as conversation, ritual, assembly), the crucial component is that the
public sphere ”transcends such topical spaces. We might say that it knits a plurality
of spaces into one larger space of non-assembly. The same public discussion is
deemed to pass through our debate today, and someone elses earnest conversation
tomorrow, and the newspaper interview Thursday and so on. . . . The public sphere
that emerges in the eighteenth century is a meta-topical common space.”27

Because of this, Taylor refers to his version of a public as a ”social imaginary,” a way 118

of capturing a phenomena that wavers between having concrete existence ”out
there” and imagined rational existence ”in here.” There are a handful of other such
imagined spacesthe economy, the self-governing people, civil societyand in Taylors
philosophical history they are related to each through the ”ideas of moral and social
order” that have developed in the West and around the world.28

Taylors social imaginary is intended to do something specific: to resist the ”spectre of 119

idealism,” the distinction between ideas and practices, between ”ideologies” and the
so-called material world as ”rival causal agents.” Taylor suggests, ”Because human
practices are the kind of thing that makes sense, certain ideas are internal to them;
one cannot distinguish the two in order to ask the question Which causes which?”29
Even if materialist explanations of cause are satisfying, as they often are, Taylor
suggests that they are so ”at the cost of being implausible as a universal principle,”
and he offers instead an analysis of the rise of the modern imaginaries of moral
order.30

The concept of recursive public, like that of Taylors public sphere, is understood here 120

as a kind of social imaginary. The primary reason is to bypass the dichotomy between
ideas and material practice. Because the creation of software, networks, and legal
documents are precisely the kinds of activities that trouble this distinctionthey are at
once ideas and things that have material effects in the [pg40] world, both expressive
27Taylor, Modern Social Imaginaries, 86.
28On the subject of imagined communities and the role of information technologies in imagined
networks, see Green, Harvey, and Knox, ”Scales of Place and Networks”; and Flichy, The Internet
Imaginaire.
29Taylor, Modern Social Imaginaries, 32.
30Ibid., 33-48. Taylors history of the transition from feudal nobility to civil society to the rise of
republican democracies (however incomplete) is comparable to Foucaults history of the birth of
biopolitics, in La naissance de la biopolitique, as an attempt to historicize governance with respect to its
theories and systems, as well as within the material forms it takes.

Two Bits Christopher M. Kelty 36

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and performativeit is extremely difficult to identify the properly material materiality
(source code? computer chips? semiconductor manufacturing plants?). This is the
first of the reasons why a recursive public is to be distinguished from the classic
formulae of the public sphere, that is, that it requires a kind of imagination that
includes the writing and publishing and speaking and arguing we are familiar with, as
well as the making of new kinds of software infrastructures for the circulation,
archiving, movement, and modifiability of our enunciations.
The concept of a social imaginary also avoids the conundrums created by the concept 121

of ”ideology” and its distinction from material practice. Ideology in its technical usage
has been slowly and surely overwhelmed by its pejorative meaning: ”The ideological
is never ones own position; it is always the stance of someone else, always their
ideology.”31 If one were to attempt an explanation of any particular ideology in
nonpejorative terms, there is seemingly nothing that might rescue the explanation
from itself becoming ideological.
The problem is an old one. Clifford Geertz noted it in ”Ideology as a Cultural System,” 122

as did Karl Mannheim before him in Ideology and Utopia: it is the difficulty of
employing a non-evaluative concept of ideology.32 Of all the versions of struggle over
the concept of a scientific or objective sociology, it is the claim of exploring ideology
objectively that most rankles. As Geertz put it, ”Men do not care to have beliefs to
which they attach great moral significance examined dispassionately, no matter for
how pure a purpose; and if they are themselves highly ideologized, they may find it
simply impossible to believe that a disinterested approach to critical matters of social
and political conviction can be other than a scholastic sham.”33

Mannheim offered one response: a version of epistemological relativism in which the 123

analysis of ideology included the ideological position of the analyst. Geertz offered
another: a science of ”symbolic action” based in Kenneth Burkes work and drawing
on a host of philosophers and literary critics.34 Neither the concept of ideology, nor
the methods of cultural anthropology have been the same since. ”Ideology” has
become one of the most widely deployed (some might say, most diffuse) tools of
critique, where critique is understood as the analysis of cultural patterns given in
language and symbolic structures, for the purposes of bringing [pg41] to light systems
of hegemony, domination, authority, resistance, and/or misrecognition.35 However,

31Ricoeur, Lectures on Ideology and Utopia, 2.
32Geertz, ”Ideology as a Cultural System”; Mannheim, Ideology and Utopia. Both, of course, also signal
the origin of the scientific use of the term proximately with Karl Marxs ”German Ideology” and more
distantly in the Enlightenment writings of Destutt de Tracy.
33Geertz, ”Ideology as a Cultural System,” 195.
34Ibid., 208-13.
35The depth and the extent of this issue is obviously huge. Ricoeurs Lectures on Ideology and Utopia is
an excellent analysis to the problem of ideology prior to 1975. Terry Eagletons books The Ideology of the
Aesthetic and Ideology: An Introduction are Marxist explorations that include discussions of hegemony
and resistance in the context of artistic and literary theory in the 1980s. Slavoj iek creates a
Lacanian-inspired algebraic system of analysis that combines Marxism and psychoanalysis in novel ways
(see iek, Mapping Ideology). There is even an attempt to replace the concept of ideology with a
metaphor of ”software” and ”memes” (see Balkin, Cultural Software). The core of the issue of ideology
as a practice (and the vicissitudes of materialism that trouble it) are also at the heart of works by Pierre

Two Bits Christopher M. Kelty 37

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

the practices of critique are just as (if not more) likely to be turned on critical scholars
themselves, to show how the processes of analysis, hidden assumptions, latent
functions of the university, or other unrecognized features the material,
non-ideological real world cause the analyst to fall into an ideological trap.
The concept of ideology takes a turn toward ”social imaginary” in Paul Ricoeurs 124

Lectures on Ideology and Utopia, where he proposes ideological and utopian thought
as two components of ”social and cultural imagination.” Ricoeurs overview divides
approaches to the concept of ideology into three basic typesthe distorting, the
integrating, and the legitimatingaccording to how actors deal with reality through
(symbolic) imagination. Does the imagination distort reality, integrate it, or legitimate
it vis-à-vis the state? Ricoeur defends the second, Geertzian flavor: ideologies
integrate the symbolic structure of the world into a meaningful whole, and ”only
because the structure of social life is already symbolic can it be distorted.”36

For Ricoeur, the very substance of life begins in the interpretation of reality, and 125

therefore ideologies (as well as utopiasand perhaps conspiracies) could well be
treated as systems that integrate those interpretations into the meaningful wholes of
political life. Ricoeurs analysis of the integration of reality though social imagination,
however, does not explicitly address how imagination functions: what exactly is the
nature of this symbolic action or interpretation, or imagination? Can one know it from
the outside, and does it resist the distinction between ideology and material practice?
Both Ricoeur and Geertz harbor hope that ideology can be made scientific, that the
integration of reality through symbolic action requires only the development of
concepts adequate to the job.
Re-enter Charles Taylor. In Modern Social Imaginaries the concept of social imaginary 126

is distinctive in that it attempts to capture the specific integrative imaginations of
modern moral and social order. Taylor stresses that they are imaginationsnot
necessarily theoriesof modern moral and social order: ”By social imaginary, I mean
something much broader and deeper than the intellectual schemes people may
entertain when they think about social reality in a disengaged mode. I am thinking,
rather, of the ways in [pg42] which people imagine their social existence, how they fit
together with others, how things go on between them and their fellows, the
expectations that are normally met, and the deeper normative notions and images
that underlie these expectations.”37 Social imaginaries develop historically and result
in both new institutions and new subjectivities; the concepts of public, market, and
civil society (among others) are located in the imaginative faculties of actors who
recognize the shared, common existence of these ideas, even if they differ on the
details, and the practices of those actors reflect a commitment to working out these
shared concepts.
Social imaginaries are an extension of ”background” in the philosophical sense: ”a 127

Bourdieu and his followers (on the relationship of ideology and hegemony, see Laclau and Mouffe,
Hegemony and Socialist Strategy). In anthropology, see Comaroff and Comaroff, Ethnography and the
Historical Imagination.
36Ricoeur, Lectures on Ideology and Utopia, 10.
37Taylor, Modern Social Imaginaries, 23.

Two Bits Christopher M. Kelty 38

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

wider grasp of our whole predicament.”38 The example Taylor uses is that of
marching in a demonstration: the action is in our imaginative repertory and has a
meaning that cannot be reduced to the local context: ”We know how to assemble,
pick up banners and march. . . . [W]e understand the ritual. . . . [T]he immediate
sense of what we are doing, getting the message to our government and our fellow
citizens that the cuts must stop, say, makes sense in a wider context, in which we see
ourselves standing in a continuing relation with others, in which it is appropriate to
address them in this manner.”39 But we also stand ”internationally” and ”in history”
against a background of stories, images, legends, symbols, and theories. ”The
background that makes sense of any given act is wide and deep. It doesnt include
everything in our world, but the relevant sense-giving features cant be circumscribed.
. . . [It] draws on our whole world, that is, our sense of our whole predicament in time
and space, among others and in history.”40

The social imaginary is not simply the norms that structure our actions; it is also a 128

sense of what makes norms achievable or ”realizable,” as Taylor says. This is the idea
of a ”moral order,” one that we expect to exist, and if it doesnt, one that provides a
plan for achieving it. For Taylor, there is such a thing as a ”modern idea of order,”
which includes, among other things, ideas of what it means to be an individual, ideas
of how individual passions and desires are related to collective association, and, most
important, ideas about living in time together (he stresses a radically secular
conception of timesecular in a sense that means more than simply ”outside religion”).
He by no means insists that this is the only such definition of modernity (the door is
wide open to understanding alternative modernities), but that the modern idea of
moral order is [pg43] one that dominates and structures a very wide array of
institutions and individuals around the world.
The ”modern idea of moral order” is a good place to return to the question of geeks 129

and their recursive publics. Are the ideas of order shared by geeks different from
those Taylor outlines? Do geeks like Sean and Adrian, or activists in Berlin, possess a
distinctive social imaginary? Or do they (despite their planetary dispersal) participate
in this common modern idea of moral order? Do the stories and narratives, the tools
and technologies, the theories and imaginations they follow and build on have
something distinctive about them? Seans and Adrians commitment to transforming
healthcare seems to be, for instance, motivated by a notion of moral order in which
the means of allocation of healthcare might become more just, but it is also shot
through with technical ideas about the role of standards, the Internet, and the
problems with current technical solutions; so while they may seem to be simply
advocating for better healthcare, they do so through a technical language and
practice that are probably quite alien to policymakers, upper management, and
healthcare advocacy groups that might otherwise be in complete sympathy.
The affinity of geeks for each other is processed through and by ideas of order that 130

are both moral and technicalideas of order that do indeed mix up ”operating systems

38Ibid., 25.
39Ibid., 26-27.
40Ibid., 28.

Two Bits Christopher M. Kelty 39

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and social systems.” These systems include the technical means (the infrastructure)
through which geeks meet, assemble, collaborate, and plan, as well as how they talk
and think about those activities. The infrastructurethe Internetallows for a remarkably
wide and diverse array of people to encounter and engage with each other. That is to
say, the idea of order shared by geeks is shared because they are geeks, because
they ”get it,” because the Internets structure and software have taken a particular
form through which geeks come to understand the moral order that gives the fabric
of their political lives warp and weft.

Internet Silk Road 131

Bangalore, March 2000. I am at another bar, this time on one of Bangalores trendiest 132

streets. The bar is called Purple Haze, and I have been taken there, the day after my
arrival, by Udhay Shankar [pg44] N. Inside it is dark and smoky, purple, filled with men
between eighteen and thirty, and decorated with posters of Jimi Hendrix, Black
Sabbath, Jim Morrison (Udhay: ”I hate that band”), Led Zeppelin, and a somewhat out
of place Frank Zappa (Udhay: ”One of my political and musical heroes”). All of the
men, it appears, are singing along with the music, which is almost without exception
heavy metal.
I engage in some stilted conversation with Udhay and his cousin Kirti about the 133

difference between Karnatic music and rock-androll, which seems to boil down to the
following: Karnatic music decreases metabolism and heart rate, leading to a relaxed
state of mind; rock music does the opposite. Given my aim of focusing on the Internet
and questions of openness, I have already decided not to pay attention to this talk of
music. In retrospect, I understand this to have been a grave methodological error: I
underestimated the extent to which the subject of music has been one of the primary
routes into precisely the questions about the ”reorientation of knowledge and power”
I was interested in. Over the course of the evening and the following days, Udhay
introduced me, as promised, to a range of people he either knew or worked with in
some capacity. Almost all of the people I met appeared to sincerely love heavy-metal
music.
I met Udhay Shankar N. in 1999 through a newsletter, distributed via e-mail, called 134

Tasty Bits from the Technology Front. It was one of a handful of sources I watched
closely while in Berlin, looking for such connections to geek culture. The newsletter
described a start-up company in Bangalore, one that was devoted to creating a
gateway between the Internet and mobile phones, and which was, according to the
newsletter, an entirely Indian operation, though presumably with U.S. venture funds. I
wanted to find a company to compare to Amicas: a start-up, run by geeks, with a
similar approach to the Internet, but halfway around the world and in a ”culture” that
might be presumed to occupy a very different kind of moral order. Udhay invited me
to visit and promised to introduce me to everyone he knew. He described himself as a
”random networker”; he was not really a programmer or a designer or a Free Software
geek, despite his extensive knowledge of software, devices, operating systems, and
so on, including Free and Open Source Software. Neither was he a businessman, but

Two Bits Christopher M. Kelty 40

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

rather described himself as the guy who ”translates between the suits and the techs.”
[pg45]

Udhay ”collects interesting people,” and it was primarily through his zest for 135

collecting that I met all the people I did. I met cosmopolitan activists and elite lawyers
and venture capitalists and engineers and cousins and brothers and sisters of
engineers. I met advertising executives and airline flight attendants and consultants
in Bombay. I met journalists and gastroenterologists, computer-science professors
and musicians, and one mother of a robot scientist in Bangalore. Among them were
Muslims, Hindus, Jains, Jews, Parsis, and Christians, but most of them considered
themselves more secular and scientific than religious. Many were self-educated, or
like their U.S. counterparts, had dropped out of university at some point, but
continued to teach themselves about computers and networks. Some were graduates
or employees of the Indian Institute of Science in Bangalore, an institution that was
among the most important for Indian geeks (as Stanford University is to Silicon Valley,
many would say). Among the geeks to whom Udhay introduced me, there were only
two commonalities: the geeks were, for the most part, male, and they all loved
heavy-metal music.41

While I was in Bangalore, I was invited to join a mailing list run by Udhay called 136

Silk-list, an irregular, unmoderated list devoted to ”intelligent conversation.” The list
has no particular focus: long, meandering conversations about Indian politics,
religion, economics, and history erupt regularly; topics range from food to science
fiction to movie reviews to discussions on Kashmir, Harry Potter, the singularity, or
nanotechnology. Udhay started Silk-list in 1997 with Bharath Chari and Ram
Sundaram, and the recipients have included hundreds of people around the world,
some very well-known ones, programmers, lawyers, a Bombay advertising executive,
science-fiction authors, entrepreneurs, one member of the start-up Amicas, at least
two transhumanists, one (diagnosed) schizophrenic, and myself. Active participants
usually numbered about ten to fifteen, while many more lurked in the
background.
Silk-list is an excellent index of the relationship between the network of people in 137

Bangalore and their connection to a worldwide community on the Interneta
fascinating story of the power of heterogeneously connected networks and media.
Udhay explained that in the early 1990s he first participated in and then taught
himself to configure and run a modem-based networking system known as a Bulletin

41The question of gender plagues the topic of computer culture. The gendering of hackers and geeks
and the more general exclusion of women in computing have been widely observed by academics. I can
do no more here than direct readers to the increasingly large and sophisticated literature on the topic.
See especially Light, ”When Computers Were Women”; Turkle, The Second Self and Life on the Screen.
With respect to Free Software, see Nafus, Krieger, Leach, ”Patches Dont Have Gender.” More generally,
see Kirkup et al., The Gendered Cyborg; Downey, The Machine in Me; Faulkner, ”Dualisms, Hierarchies
and Gender in Engineering”; Grint and Gill, The Gender-Technology Relation; Helmreich, Silicon Second
Nature; Herring, ”Gender and Democracy in Computer-Mediated Communication”; Kendall, ”Oh No! Im a
NERD!”; Margolis and Fisher, Unlocking the Clubhouse; Green and Adam, Virtual Gender; P. Hopkins,
Sex/Machine; Wajcman, Feminism Confronts Technology and ”Reflections on Gender and Technology
Studies”; and Fiona Wilson, ”Cant Compute, Wont Compute.” Also see the novels and stories of Ellen
Ullman, including Close to the Machine and The Bug: A Novel.

Two Bits Christopher M. Kelty 41

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Board Service (BBS) in Bangalore. In 1994 he heard about a book by Howard
Rheingold called The Virtual [pg46] Community, which was his first introduction to the
Internet. A couple of years later when he finally had access to the Internet, he
immediately e-mailed John Perry Barlow, whose work he knew from Wired magazine,
to ask for Rheingolds e-mail address in order to connect with him. Rheingold and
Barlow exist, in some ways, at the center of a certain kind of geek world: Rheingolds
books are widely read popular accounts of the social and community aspects of new
technologies that have often had considerable impact internationally; Barlow helped
found the Electronic Frontier Foundation and is responsible for popularizing the
phrase ”information wants to be free.”42 Both men had a profound influence on
Udhay and ultimately provided him with the ideas central to running an online
community. A series of other connections of similar sortssome personal, some
precipitated out of other media and other channels, some entirely randomare what
make up the membership of Silk-list.43

Like many similar communities of ”digerati” during and after the dot.com boom, 138

Silk-list constituted itself more or less organically around people who ”got it,” that is,
people who claimed to understand the Internet, its transformative potential, and who
had the technical skills to participate in its expansion. Silk-list was not the only list of
its kind. Others such as the Tasty Bits newsletter, the FoRK (Friends of Rohit Khare)
mailing list (both based in Boston), and the Nettime and Syndicate mailing lists (both
based in the Netherlands) ostensibly had different reasons for existence, but many
had the same subscribers and overlapping communities of geeks. Subscription was
open to anyone, and occasionally someone would stumble on the list and join in, but
most were either invited by members or friends of friends, or they were connected by
virtue of cross-posting from any number of other mailing lists to which members were
subscribed.

/pub 139

Silk-list is public in many senses of the word. Practically speaking, one need not be 140

invited to join, and the material that passes through the list is publicly archived and
can be found easily on the Internet. Udhay does his best to encourage everyone to
speak and to participate, and to discourage forms of discourse that he thinks [pg47]

might silence participants into lurking. Silk-list is not a government, corporate, or
nongovernmental list, but is constituted only through the activity of geeks finding
each other and speaking to each other on this list (which can happen in all manner of
ways: through work, through school, through conferences, through fame, through
random association, etc.). Recall Charles Taylors distinction between a topical and a
metatopical space. Silk-list is not a conventionally topical space: at no point do all of
its members meet face-to-face (though there are regular meet-ups in cities around
the world), and they are not all online at the same time (though the volume and
42Originally coined by Steward Brand, the phrase was widely cited after it appeared in Barlows 1994
article ”The Economy of Ideas.”
43On the genesis of ”virtual communities” and the role of Steward Brand, see Turner, ”Where the
Counterculture Met the New Economy.”

Two Bits Christopher M. Kelty 42

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

tempo of messages often reflect who is online ”speaking” to each other at any given
moment). It is a topical space, however, if one considers it from the perspective of
the machine: the list of names on the mailing list are all assembled together in a
database, or in a file, on the server that manages the mailing list. It is a stretch to call
this an ”assembly,” however, because it assembles only the avatars of the mailing-list
readers, many of whom probably ignore or delete most of the messages.
Silk-list is certainly, on the other hand, a ”metatopical” public. It ”knits together” a 141

variety of topical spaces: my discussion with friends in Houston, and other members
discussions with people around the world, as well as the sources of multiple
discussions like newspaper and magazine articles, films, events, and so on that are
reported and discussed online. But Silk-list is not ”The” publicit is far from being the
only forum in which the public sphere is knitted together. Many, many such lists
exist.
In Publics and Counterpublics Michael Warner offers a further distinction. ”The” public 142

is a social imaginary, one operative in the terms laid out by Taylor: as a kind of vision
of order evidenced through stories, images, narratives, and so on that constitute the
imagination of what it means to be part of the public, as well as plans necessary for
creating the public, if necessary. Warner distinguishes, however, between a concrete,
embodied audience, like that at a play, a demonstration, or a riot (a topical public in
Taylors terms), and an audience brought into being by discourse and its circulation,
an audience that is not metatopical so much as it is a public that is concrete in a
different way; it is concrete not in the face-to-face temporality of the speech act, but
in the sense of calling a public into being through an address that has a different
temporality. It is a public that is concrete in a media-specific [pg48] manner: it depends
on the structures of creation, circulation, use, performance, and reuse of particular
kinds of discourse, particular objects or instances of discourse.
Warners distinction has a number of implications. The first, as Warner is careful to 143

note, is that the existence of particular media is not sufficient for a public to come
into existence. Just because a book is printed does not mean that a public exists; it
requires also that the public take corresponding action, that is, that they read it. To be
part of a particular public is to choose to pay attention to those who choose to
address those who choose to pay attention . . . and so on. Or as Warner puts it, ”The
circularity is essential to the phenomenon. A public might be real and efficacious, but
its reality lies in just this reflexivity by which an addressable object is conjured into
being in order to enable the very discourse that gives it existence.”44

This ”autotelic” feature of a public is crucial if one is to understand the function of a 144

public as standing outside of power. It simply cannot be organized by the state, by a
corporation, or by any other social totality if it is to have the legitimacy of an
independently functioning public. As Warner puts it, ”A public organizes itself
independently of state institutions, law, formal frameworks of citizenship, or
preexisting institutions such as the church. If it were not possible to think of the
public as organized independently of the state or other frameworks, the public could

44Warner, ”Publics and Counterpublics,” 51.

Two Bits Christopher M. Kelty 43

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

not be sovereign with respect to the state. . . . Speaking, writing, and thinking involve
usactively and immediatelyin a public, and thus in the being of the sovereign.”45

Warners description makes no claim that any public or even The Public actually takes 145

this form in the present: it is a description of a social imaginary or a ”faith” that
allows individuals to make sense of their actions according to a modern idea of social
order. As Warner (and Habermas before him) suggests, the existence of such
autonomous publicsand certainly the idea of ”public opinion” does not always
conform to this idea of order. Often such publics turn out to have been controlled all
along by states, corporations, capitalism, and other forms of social totality that
determine the nature of discourse in insidious ways. A public whose participants have
no faith that it is autotelic and autonomous is little more than a charade meant to
assuage opposition to authority, to transform [pg49] political power and equality into
the negotiation between unequal parties.
Is Silk-list a public? More important, is it a sovereign one? Warners distinction 146

between different media-specific forms of assembly is crucial to answering this
question. If one wants to know whether a mailing list on the Internet is more or less
likely to be a sovereign public than a book-reading public or the nightly-news-hearing
one, then one needs to approach it from the specificity of the form of discourse. This
specificity not only includes whether the form is text or video and audio, or whether
the text is ASCII or Unicode, or the video PAL or NTSC, but it also includes the means
of creation, circulation, and reuse of that discourse as well.
The on-demand, Internet-mediated book, by contrast, will have a much different 147

temporality of circulation: it might languish in obscurity due to lack of marketing or
reputable authority, or it might get mentioned somewhere like the New York Times
and suddenly become a sensation. For such a book, copyright law (in the form of a
copyleft license) might allow a much wider range of uses and reuses, but it will
restrict certain forms of commercialization of the text. The two publics might
therefore end up looking quite different, overlapping, to be sure, but varying in terms
of their control [pg50] and the terms of admittance. What is at stake is the power of one
or the other such public to appear as an independent and sovereign entityfree from
suspect constraints and controlwhose function is to argue with other constituted
forms of power.
The conventionally published book may well satisfy all the criteria of being a public, 148

at least in the colloquial sense of making a set of ideas and a discourse widely
available and expecting to influence, or receive a response from, constituted forms of
sovereign power. However, it is only the latter ”on-demand” scheme for publishing
that satisfies the criteria of being a recursive public. The differences in this example
offer a crude indication of why the Internet is so crucially important to geeks, so
important that it draws them together, in its defense, as an infrastructure that
enables the creation of publics that are thought to be autonomous, independent, and
autotelic. Geeks share an idea of moral and technical order when it comes to the
Internet; not only this, but they share a commitment to maintaining that order
because it is what allows them to associate as a recursive public in the first place.
45Ibid., 51-52. See also Warner, Publics and Counterpublics, 69.

Two Bits Christopher M. Kelty 44

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

They discover, or rediscover, through their association, the power and possibility of
occupying the position of independent publicone not controlled by states,
corporations, or other organizations, but open (they claim) through and throughand
develop a desire to defend it from encroachment, destruction, or refeudalization (to
use Habermass term for the fragmentation of the public sphere).
The recursive public is thus not only the book and the discourse around the book. It is 149

not even ”content” expanded to include all kinds of media. It is also the technical
structure of the Internet as well: its software, its protocols and standards, its
applications and software, its legal status and the licenses and regulations that
govern it. This captures both of the reasons why recursive publics are distinctive: (1)
they include not only the discourses of a public, but the ability to make, maintain, and
manipulate the infrastructures of those discourses as well; and (2) they are ”layered”
and include both discourses and infrastructures, to a specific technical extent (i.e.,
not all the way down). The meaning of which layers are important develops more or
less immediately from direct engagement with the medium. In the following example,
for instance, Napster represents the potential of the Internet in miniatureas an
applicationbut it also connects immediately to concerns about the core protocols that
govern the Internet and the process of standardization [pg51] that governs the
development of these protocols: hence recursion through the layers of an
infrastructure.
These two aspects of the recursive public also relate to a concern about the 150

fragmentation or refeudalization of the public sphere: there is only one Internet. Its
singularity is not technically determined or by any means necessary, but it is what
makes the Internet so valuable to geeks. It is a contest, the goal of which is to
maintain the Internet as an infrastructure for autonomous and autotelic publics to
emerge as part of The Public, understood as part of an imaginary of moral and
technical order: operating systems and social systems.

From Napster to the Internet 151

On 27 July 2000 Eugen Leitl cross-posted to Silk-list a message with the subject line 152

”Prelude to the Singularity.” The messages original author, Jeff Bone (not at the time a
member of Silk-list), had posted the ”op-ed piece” initially to the FoRK mailing list as
a response to the Recording Industry Association of Americas (RIAA) actions against
Napster. The RIAA had just succeeded in getting U.S. district judge Marilyn Hall Patel,
Ninth Circuit Court of Appeals, to issue an injunction to Napster to stop downloads of
copyrighted music. Bones op-ed said,

Popular folklore has it that the Internet was designed with decentralized routing 153

protocols in order to withstand a nuclear attack. That is, the Internet ”senses
damage” and ”routes around it.” It has been said that, on the Net, censorship is
perceived as damage and is subsequently routed around. The RIAA, in a sense,
has cast itself in a censors role. Consequently, the music industry will be
perceived as damageand it will be routed around. There is no doubt that this will
happen, and that technology will evolve more quickly than businesses and social

Two Bits Christopher M. Kelty 45

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

institutions can; there are numerous highly-visible projects already underway that
attempt to create technology that is invulnerable to legal challenges of various
kinds. Julian Morrison, the originator of a project (called Fling) to build a fully
anonymous/untraceable suite of network protocols, expresses this particularly
eloquently.46

Bones message is replete with details that illustrate the meaning and value of the 154

Internet to geeks, and that help clarify the concept [pg52] of a recursive public. While it
is only one message, it nonetheless condenses and expresses a variety of stories,
images, folklore, and technical details that I elaborate herein.
The Napster shutdown in 2000 soured music fans and geeks alike, and it didnt really 155

help the record labels who perpetrated it either. For many geeks, Napster
represented the Internet in miniature, an innovation that both demonstrated
something on a scope and scale never seen before, and that also connected people
around something they cared deeply abouttheir shared interest in music. Napster
raised interesting questions about its own success: Was it successful because it
allowed people to develop new musical interests on a scope and scale they had never
experienced before? Or was it successful because it gave people with already existing
musical interests a way to share music on a scope and scale they had never
experienced before? That is to say, was it an innovation in marketing or in
distribution? The music industry experienced it as the latter and hence as direct
competition with their own means of distribution. Many music fans experienced it as
the former, what Cory Doctorow nicely labeled ”risk-free grazing,” meaning the ability
to try out an almost unimaginable diversity of music before choosing what to invest
ones interests (and money) in. To a large extent, Napster was therefore a
recapitulation of what the Internet already meant to geeks.
Bones message, the event of the Napster shutdown, and the various responses to it 156

nicely illustrate the two key aspects of the recursive public: first, the way in which
geeks argue not only about rights and ideas (e.g., is it legal to share music?) but also
about the infrastructures that allow such arguing and sharing; second, the ”layers” of
a recursive public are evidenced in the immediate connection of Napster (an
application familiar to millions) to the ”decentralized routing protocols” (TCP/IP, DNS,
and others) that made it possible for Napster to work the way it did.
Bones message contains four interrelated points. The first concerns the concept of 157

autonomous technical progress. The title ”Prelude to the Singularity” refers to a 1993
article by Vernor Vinge about the notion of a ”singularity,” a point in time when the
speed of autonomous technological development outstrips the human capacity to
control it.47 The notion of singularity has the status of a kind of colloquial ”law”
similar to Moores Law or Metcalfes Law, as well as signaling links to a more general

46The rest of this message can be found in the Silk-list archives at
⌜ http://groups.yahoo.com/group/silk-list/message/2869 ⌟ (accessed 18 August 2006). The reference to ”Fling”
is to a project now available at ⌜ http://fling.sourceforge.net/ ⌟ (accessed 18 August 2006). The full
archives of Silk-list can be found at ⌜ http://groups.yahoo.com/group/silk-list/ ⌟ and the full archives of the
FoRK list can be found at ⌜ http://www.xent.com/mailman/listinfo/fork/ ⌟ .
47Vinge, ”The Coming Technological Singularity.”

Two Bits Christopher M. Kelty 46

http://groups.yahoo.com/group/silk-list/message/2869
http://fling.sourceforge.net/
http://groups.yahoo.com/group/silk-list/
http://www.xent.com/mailman/listinfo/fork/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

literature with roots in [pg53] libertarian or classically liberal ideas of social order
ranging from John Locke and John Stuart Mill to Ayn Rand and David Brin.48

Bones affinity for transhumanist stories of evolutionary theory, economic theory, and 158

rapid innovation sets the stage for the rest of his message. The crucial rhetorical
gambit here is the appeal to inevitability (as in the emphatic ”there is no doubt that
this will happen”): Bone establishes that he is speaking to an audience that is
accustomed to hearing about the inevitability of technical progress and the
impossibility of legal maneuvering to change it, but his audience may not necessarily
agree with these assumptions. Geeks occupy a spectrum from ”polymath” to
”transhumanist,” a spectrum that includes their understandings of technological
progress and its relation to human intervention. Bones message clearly lands on the
far transhumanist side.
A second point concerns censorship and the locus of power: according to Bone, power 159

does not primarily reside with the government or the church, but comes instead from
the private sector, in this case the coalition of corporations represented by the RIAA.
The significance of this has to do with the fact that a ”public” is expected to be its
own sovereign entity, distinct from church, state, or corporation, and while censorship
by the church or the state is a familiar form of aggression against publics, censorship
by corporations (or consortia representing them), as it strikes Bone and others, is a
novel development. Whether the blocking of file-sharing can legitimately be called
censorship is also controversial, and many Silk-list respondents found the accusation
of censorship untenable.
Proving Bones contention, over the course of the subsequent years and court cases, 160

the RIAA and the Motion Picture Association of America (MPAA) have been given
considerably more police authority than even many federal agenciesespecially with
regard to policing networks themselves (an issue which, given its technical
abstruseness, has rarely been mentioned in the mainstream mass media). Both
organizations have not only sought to prosecute filesharers but have been granted
rights to obtain information from Internet Service Providers about customer activities
and have consistently sought the right to secretly disable (hack into, disable, or
destroy) private computers suspected of illegal activity. Even if these practices may
not be defined as censorship per se, they are nonetheless fine examples of the issues
that most exercise geeks: the use of legal means by a few (in this case, private
corporations) to [pg54] suppress or transform technologies in wide use by the many.
They also index the problems of monopoly, antitrust, and technical control that are
not obvious and often find expression, for example, in allegories of reformation and
the control of the music-sharing laity by papal authorities.
Third, Bones message can itself be understood in terms of the reorientation of 161

knowledge and power. Although what it means to call his message an ”op-ed” piece

48Moores Lawnamed for Gordon Moore, former head of Intelstates that the speed and capacity of
computer central processing units (CPUs) doubles every eighteen months, which it has done since
roughly 1970. Metcalfes Lawnamed for Robert Metcalfe, inventor of Ethernetstates that the utility of a
network equals the square of the number of users, suggesting that the number of things one can do
with a network increases exponentially as members are added linearly.

Two Bits Christopher M. Kelty 47

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

may seem obvious, Bones message was not published anywhere in any conventional
sense. It doesnt appear to have been widely cited or linked to. However, for one day
at least, it was a heated discussion topic on three mailing lists, including Silk-list.
”Publication” in this instance is a different kind of event than getting an op-ed in the
New York Times.
The material on Silk-list rests somewhere between private conversation (in a public 162

place, perhaps) and published opinion. No editor made a decision to ”publish” the
messageBone just clicked ”send.” However, as with any print publication, his piece
was theoretically accessible by anyone, and whats more, a potentially huge number
of copies may be archived in many different places (the computers of all the
participants, the server that hosts the list, the Yahoo! Groups servers that archive it,
Googles search databases, etc.). Bones message exemplifies the recursive nature of
the recursive public: it is a public statement about the openness of the Internet, and
it is an example of the new forms of publicness it makes possible through its
openness.
The constraints on who speaks in a public sphere (such as the power of printers and 163

publishers, the requirements of licensing, or issues of cost and accessibility) are much
looser in the Internet era than in any previous one. The Internet gives a previously
unknown Jeff Bone the power to dash off a manifesto without so much as a second
thought. On the other hand, the ease of distribution belies the difficulty of actually
being heard: the multitudes of other Jeff Bones make it much harder to get an
audience. In terms of publics, Bones message can constitute a public in the same
sense that a New York Times op-ed can, but its impact and meaning will be different.
His message is openly and freely available for as long as there are geeks and laws
and machines that maintain it, but the New York Times piece will have more authority,
will be less accessible, and, most important, will not be available to just anyone.
Geeks imagine a space where anyone can speak with similar reach and staying [pg55]

powereven if that does not automatically imply authorityand they imagine that it
should remain open at all costs. Bone is therefore interested precisely in a technical
infrastructure that ensures his right to speak about that infrastructure and offer
critique and guidance concerning it.
The ability to create and to maintain such a recursive public, however, raises the 164

fourth and most substantial point that Bones message makes clear. The leap to
speaking about the ”decentralized routing protocols” represents clearly the shared
moral and technical order of geeks, derived in this case from the specific details of
the Internet. Bones post begins with a series of statements that are part of the
common repertoire of technical stories and images among geeks. Bone begins by
making reference to the ”folklore” of the Internet, in which routing protocols are
commonly believed to have been created to withstand a nuclear attack. In calling it
folklore he suggests that this is not a precise description of the Internet, but an image
that captures its design goals. Bone collapses it into a more recent bit of folklore:
”The Internet treats censorship as damage and routes around it.”49 Both bits of

49This quotation from the 1990s is attributed to Electronic Frontier Foundations founder and
”cyber-libertarian” John Gilmore. Whether there [pg319] is any truth to this widespread belief expressed in

Two Bits Christopher M. Kelty 48

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

folklore are widely circulated and cited; they encapsulate one of the core intellectual
ideas about the architecture of the Internet, that is, its open and distributed
interconnectivity. There is certainly a specific technical backdrop for this suggestion:
the TCP/IP ”internetting” protocols were designed to link up multiple networks without
making them sacrifice their autonomy and control. However, Bone uses this technical
argument more in the manner of a social imaginary than of a theory, that is, as a way
of thinking about the technical (and moral) order of the Internet, of what the Internet
is supposed to be like.
In the early 1990s this version of the technical order of the Internet was part of a 165

vibrant libertarian dogma asserting that the Internet simply could not be governed by
any land-based sovereign and that it was fundamentally a place of liberty and
freedom. This was the central message of people such as John Perry Barlow, John
Gilmore, Howard Rheingold, Esther Dyson, and a host of others who populated both
the pre-1993 Internet (that is, before the World Wide Web became widely available)
and the pages of magazines such as Wired and Mondo 2000the same group of people,
incidentally, whose ideas were visible and meaningful to Udhay Shankar and his
friends in India even prior to Internet access there, not to mention to Sean and Adrian
in Boston, and artists and activists in [pg56] Europe, all of whom often reacted more
strongly against this libertarian aesthetic.
For Jeff Bone (and a great many geeks), the folkloric notion that ”the net treats 166

censorship as damage” is a very powerful one: it suggests that censorship is
impossible because there is no central point of control. A related and oft-cited
sentiment is that ”trying to take something off of the Internet is like trying to take pee
out of a pool.” This is perceived by geeks as a virtue, not a drawback, of the
Internet.
For Jeff Bone (and a great many geeks), the folkloric notion that ”the net treats 167

censorship as damage” is a very powerful one: it suggests that censorship is
impossible because there is no central point of control. A related and oft-cited
sentiment is that ”trying to take something off of the Internet is like trying to take pee
out of a pool.” This is perceived by geeks as a virtue, not a drawback, of the
Internet.
On the other side of the spectrum, however, this view of the unregulatable nature of 168

the Internet has been roundly criticized, most prominently by Lawrence Lessig, who is
otherwise often in sympathy with geek culture. Lessig suggests that just because the
Internet has a particular structure does not mean that it must always be that way.50
His argument has two prongs: first, that the Internet is structured the way it is

the statement is not clear. On the one hand, the protocol to which this folklore refersthe general system
of ”message switching” and, later, ”packet switching” invented by Paul Baran at RAND Corporationdoes
seem to lend itself to robustness (on this history, see Abbate, Inventing the Internet). However, it is not
clear that nuclear threats were the only reason such robustness was a design goal; simply to ensure
communication in a distributed network was necessary in itself. Nonetheless, the story has great
currency as a myth of the nature and structure of the Internet. Paul Edwards suggests that both stories
are true (”Infrastructure and Modernity,” 216-20, 225n13).
50Lessig, Code and Other Laws of Cyberspace. See also Gillespie, ”Engineering a Principle” on the
related history of the ”end to end” design principle.

Two Bits Christopher M. Kelty 49

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

because it is made of code that people write, and thus it could have been and will be
otherwise, given that there are changes and innovations occurring all the time;
second, that the particular structure of the Internet therefore governs or regulates
behavior in particular ways: Code is Law. So while it may be true that no one can
make the Internet ”closed” by passing a law, it is also true that the Internet could
become closed if the technology were to be altered for that purpose, a process that
may well be nudged and guided by laws, regulations, and norms.
Lessigs critique is actually at the heart of Bones concern, and the concern of 169

recursive publics generally: the Internet is a contest and one that needs to be
repeatedly and constantly replayed in order to maintain it as the legitimate
infrastructure through which geeks associate with one another. Geeks argue in detail
about what distinguishes technical factors from legal or social ones. Openness on the
Internet is complexly intertwined with issues of availability, price, legal restriction,
usability, elegance of design, censorship, trade secrecy, and so on. [pg57]

However, even where openness is presented as a natural tendency for technology (in 170

oft-made analogies with reproductive fitness and biodiversity, for example), it is only
a partial claim in that it represents only one of the ”layers” of a recursive public. For
instance, when Bone suggests that the net is ”invulnerable to legal attack” because
”technology will evolve more quickly than businesses and social institutions can,” he
is not only referring to the fact that the Internets novel technical configuration has
few central points of control, which makes it difficult for a single institution to control
it, but also talking about the distributed, loosely connected networks of people who
have the right to write and rewrite software and deal regularly with the underlying
protocols of the Internetin other words, of geeks themselves.
Many geeks, perhaps including Bone, discover the nature of this order by coming to 171

understand how the Internet workshow it works technically, but also who created it
and how. Some have come to this understanding through participation in Free
Software (an exemplary ”recursive public”), others through stories and technologies
and projects and histories that illuminate the process of creating, growing, and
evolving the Internet. The story of the process by which the Internet is standardized is
perhaps the most well known: it is the story of the Internet Engineering Task Force
and its Requests for Comments system.

Requests for Comments 172

For many geeks, the Internet Engineering Task Force (IETF) and its Requests for 173

Comments (RFC) system exemplify key features of the moral and technical order they
share, the ”stories and practices” that make up a social imaginary, according to
Charles Taylor. The IETF is a longstanding association of Internet engineers who try to
help disseminate some of the core standards of the Internet through [pg58] the RFC
process. Membership is open to individuals, and the association has very little real
control over the structure or growth of the Internetonly over the key process of
Internet standardization. Its standards rarely have the kind of political legitimacy that
one associates with international treaties and the standards bodies of Geneva, but

Two Bits Christopher M. Kelty 50

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

they are nonetheless de facto legitimate. The RFC process is an unusual standards
process that allows modifications to existing technologies to be made before the
standard is finalized. Together Internet standards and the RFC process form the
background of the Napster debate and of Jeff Bones claims about ”internet routing
protocols.”
A famous bit of Internet-governance folklore expresses succinctly the combination of 174

moral and technical order that geeks share (attributed to IETF member David Clark):
”We reject kings, presidents, and voting. We believe in rough consensus and running
code.”51 This quote emphasizes the necessity of arguing with and through
technology, the first aspect of a recursive public; the only argument that convinces is
working code. If it works, then it can be implemented; if it is implemented, it will
”route around” the legal damage done by the RIAA. The notion of ”running code” is
central to an understanding of the relationship between argumentby- technology and
argument-by-talk for geeks. Very commonly, the response by geeks to people who
argued about Napster that summerand the courts decisions regarding itwas to
dismiss their complaints as mere talk. Many suggested that if Napster were shut
down, thousands more programs like it would spring up in its wake. As one
mailing-list participant, Ashish ”Hash” Gulhati, put it, ”It is precisely these totally
unenforceable and mindless judicial decisions that will start to look like self-satisfied
wanking when theres code out there which will make the laws worth less than the
paper theyre written on. When it comes to fighting this shit in a way that counts,
everything that isnt code is just talk.”52

Such powerful rhetoric often collapses the process itself, for someone has to write the 175

code. It can even be somewhat paradoxical: there is a need to talk forcefully about
the need for less talk and more code, as demonstrated by Eugen Leitl when I objected
that Silk-listers were ”just talking”: ”Of course we should talk. Did my last post
consist of some kickass Python code adding sore-missed functionality to Mojonation?
Nope. Just more meta-level waffle about the importance of waffling less, coding more.
I lack the [pg59] proper mental equipment upstairs for being a good coder, hence I
attempt to corrupt young impressionable innocents into contributing to the cause.
Unashamedly so. So sue me.”53

Eugens flippancy reveals a recognition that there is a political component to coding, 176

even if, in the end, talk disappears and only code remains. Though Eugen and others
might like to adopt a rhetoric that suggests ”it will just happen,” in practice none of
them really act that way. Rather, the activities of coding, writing software, or
improving and diversifying the software that exists are not inevitable or automatic but

51This is constantly repeated on the Internet and attributed to David Clark, but no one really knows
where or when he stated it. It appears in a 1997 interview of David Clark by Jonathan Zittrain, the
transcript of which is available at ⌜ http://cyber.law.harvard.edu/jzfallsem//trans/clark/ ⌟ (accessed 18
August 2006).
52Ashish ”Hash” Gulhati, e-mail to Silk-list mailing list, 9 September 2000,
⌜ http://groups.yahoo.com/group/silk-list/message/3125 ⌟ .
53Eugen Leitl, e-mail to Silk-list mailing list, 9 September 2000,
⌜ http://groups.yahoo.com/group/silk-list/message/3127 ⌟ . Python is a programming language. Mojonation was
a very promising peer-to-peer application in 2000 that has since ceased to exist.

Two Bits Christopher M. Kelty 51

http://cyber.law.harvard.edu/jzfallsem//trans/clark/
http://groups.yahoo.com/group/silk-list/message/3125
http://groups.yahoo.com/group/silk-list/message/3127
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

have specific characteristics. They require time and ”the proper mental equipment.”
The inevitability they refer to consists not in some fantasy of machine intelligence,
but in a social imaginary shared by many people in loosely connected networks who
spend all their free time building, downloading, hacking, testing, installing, patching,
coding, arguing, blogging, and proselytizingin short, creating a recursive public
enabled by the Internet.
Jeff Bones op-ed piece, which is typically enthusiastic about the inevitability of new 177

technologies, still takes time to reference one of thousands (perhaps tens of
thousands) of projects as worthy of attention and support, a project called Fling,
which is an attempt to rewrite the core protocols of the Internet.54 The goal of the
project is to write a software implementation of these protocols with the explicit goal
of making them ”anonymous, untraceable, and untappable.” Fling is not a
corporation, a start-up, or a university research project (though some such projects
are); it is only a Web site. The core protocols of the Internet, contained in the RFCs,
are little more than documents describing how computers should interact with each
other. They are standards, but of an unusual kind.55 Bones leap from a discussion
about Napster to one about the core protocols of the Internet is not unusual. It
represents the second aspect of a recursive public: the importance of understanding
the Internet as a set of ”layers,” each enabling the next and each requiring an
openness that both prevents central control and leads to maximum creativity.
RFCs have developed from an informal system of memos into a formal standardization 178

process over the life of the Internet, as the IETF and the Internet Society (ISOC) have
become more bureaucratic entities. The process of writing and maintaining these
documents is particular to the Internet, precisely because the Internet [pg60] is the kind
of network experiment that facilitates the sharing of resources across administratively
bounded networks. It is a process that has allowed all the experimenters to both
share the network and to propose changes to it, in a common space. RFCs are
primarily suggestions, not demands. They are ”public domain” documents and thus
available to everyone with access to the Internet. As David Clarks reference to
”consensus and running code” demonstrates, the essential component of setting
Internet standards is a good, working implementation of the protocols. Someone
must write software that behaves in the ways specified by the RFC, which is, after all,
only a document, not a piece of software. Different implementations of, for example,
the TCP/IP protocol or the File Transfer Protocol (ftp) depend initially on individuals,
groups, and/or corporations building them into an operating-system kernel or a piece
of user software and subsequently on the existence of a large number of people using
the same operating system or application.
In many cases, subsequent to an implementation that has been disseminated and 179

adopted, the RFCs have been amended to reflect these working implementations and
to ordain them as standards. So the current standards are actually bootstrapped,
54In particular, this project focuses on the Transmission Control Protocol (TCP), the User Datagram
Protocol (UDP), and the Domain Name System (DNS). The first two have remained largely stable over
the last thirty years, but the DNS system has been highly politicized (see Mueller, Ruling the Root).
55On Internet standards, see Schmidt and Werle, Coordinating Technology; Abbate and Kahin,
Standards Policy for Information Infrastructure.

Two Bits Christopher M. Kelty 52

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

through a process of writing RFCs, followed by a process of creating implementations
that adhere loosely to the rules in the RFC, then observing the progress of
implementations, and then rewriting RFCs so that the process begins all over again.
The fact that geeks can have a discussion via e-mail depends on the very existence of
both an RFC to define the e-mail protocol and implementations of software to send
the e-mails.
This standardization process essentially inverts the process of planning. Instead of 180

planning a system, which is then standardized, refined, and finally built according to
specification, the RFC process allows plans to be proposed, implemented, refined,
reproposed, rebuilt, and so on until they are adopted by users and become the
standard approved of by the IETF. The implication for most geeks is that this process
is permanently and fundamentally open: changes to it can be proposed,
implemented, and adopted without end, and the better a technology becomes, the
more difficult it becomes to improve on it, and therefore the less reason there is to
subvert it or reinvent it. Counterexamples, in which a standard emerges but no one
adopts it, are also plentiful, and they suggest that the standardization process
extends beyond the proposal-implementation-proposal-standard [pg61] circle to include
the problem of actually convincing users to switch from one working technology to a
better one. However, such failures of adoption are also seen as a kind of confirmation
of the quality or ease of use of the current solution, and they are all the more likely to
be resisted when some organization or political entity tries to force users to switch to
the new standardsomething the IETF has refrained from doing for the most part.

Conclusion: Recursive Public 181

Napster was a familiar and widely discussed instance of the ”reorientation of power 182

and knowledge” (or in this case, power and music) wrought by the Internet and the
practices of geeks. Napster was not, however, a recursive public or a Free Software
project, but a dot-com-inspired business plan in which proprietary software was given
away for free in the hopes that revenue would flow from the stock market, from
advertising, or from enhanced versions of the software. Therefore, geeks did not
defend Napster as much as they experienced its legal restriction as a wake-up call:
the Internet enables Napster and will enable many other things, but laws,
corporations, lobbyists, money, and governments can destroy all of it.
I started this chapter by asking what draws geeks together: what constitutes the 183

chain that binds geeks like Sean and Adrian to hipsters in Berlin and to entrepreneurs
and programmers in Bangalore? What constitutes their affinity if it is not any of the
conventional candidates like culture, nation, corporation, or language? A colloquial
answer might be that it is simply the Internet that brings them together: cyberspace,
virtual communities, online culture. But this doesnt answer the question of why?
Because they can? Because Community Is Good? If mere association is the goal, why
not AOL or a vast private network provided by Microsoft?
My answer, by contrast, is that geeks affinity with one another is structured by shared 184

moral and technical understandings of order. They are a public, an independent

Two Bits Christopher M. Kelty 53

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

public that has the ability to build, maintain, and modify itself, that is not restricted to
the activities of speaking, writing, arguing, or protesting. Recursive publics form
through their experience with the Internet precisely because the Internet is the kind
of thing they can inhabit and transform. Two [pg62] things make recursive publics
distinctive: the ability to include the practice of creating this infrastructure as part of
the activity of being public or contesting control; and the ability to ”recurse” through
the layers of that infrastructure, maintaining its publicness at each level without
making it into an unchanging, static, unmodifiable thing.
The affinity constituted by a recursive public, through the medium of the Internet, 185

creates geeks who understand clearly what association through the Internet means.
This affinity structures their imagination of what the Internet is and enables: creation,
distribution, modification of knowledge, music, science, software. The
infrastructurethis-infrastructure-here, the Internetmust be understood as part of this
imaginary (in addition to being a pulsating tangle of computers, wires, waves, and
electrons).
The Internet is not the only medium for such association. A corporation, for example, 186

is also based on a shared imaginary of the economy, of how markets, exchanges, and
business cycles are supposed to work; it is the creation of a concrete set of relations
and practices, one that is generally inflexibleeven in this age of socalled flexible
capitalismbecause it requires a commitment of time, humans, and capital. Even in
fast capitalism one needs to rent office space, buy toilet paper, install payroll
software, and so on.
The Internet is not the only medium for such association. A corporation, for example, 187

is also based on a shared imaginary of the economy, of how markets, exchanges, and
business cycles are supposed to work; it is the creation of a concrete set of relations
and practices, one that is generally inflexibleeven in this age of socalled flexible
capitalismbecause it requires a commitment of time, humans, and capital. Even in
fast capitalism one needs to rent office space, buy toilet paper, install payroll
software, and so on.
The urgency evidenced in the case of Napster (and repeated in numerous other 188

instances, such as the debate over net neutrality) is linked to a moral idea of order in
which there is a shared imaginary[pg63] of The Public, and not only a vast multiplicity of
competing publics. It is an urgency linked directly to the fact that the Internet
provides geeks with a platform, an environment, an infrastructure through which they
not only associate, but create, and do so in a manner that is widely felt to be
autonomous, autotelic, and independent of at least the most conventional forms of
power: states and corporationsindependent enough, in fact, that both states and
corporations can make widespread use of this infrastructure (can become geeks
themselves) without necessarily endangering its independence.

Two Bits Christopher M. Kelty 54

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

2.Protestant Reformers, Polymaths, Transhumanists 189

Geeks talk a lot. They dont talk about recursive publics. They dont often talk about 190

imaginations, infrastructures, moral or technical orders. But they do talk a lot. A great
deal of time and typing is necessary to create software and networks: learning and
talking, teaching and arguing, telling stories and reading polemics, reflecting on the
world in and about the infrastructure one inhabits. In this chapter I linger on the
stories geeks tell, and especially on stories and reflections that mark out
contemporary problems of knowledge and powerstories about grand issues like
progress, enlightenment, liberty, and freedom.
Issues of enlightenment, progress, and freedom are quite obviously still part of a 191

”social imaginary,” especially imaginations of the relationship of knowledge and
enlightenment to freedom and autonomy so clearly at stake in the notion of a public
or public [pg65] sphere. And while the example of Free Software illuminates how issues
of enlightenment, progress, and freedom are proposed, contested, and implemented
in and through software and networks, this chapter contains stories that are better
understood as ”usable pasts”less technical and more accessible narratives that make
sense of the contemporary world by reflecting on the past and its difference from
today.
Usable pasts is a more charitable term for what might be called modern myths among 192

geeks: stories that the tellers know to be a combination of fact and fiction. They are
told not in order to remember the past, but in order to make sense of the present and
of the future. They make sense of practices that are not questioned in the doing, but
which are not easily understood in available intellectual or colloquial terms. The first
set of stories I relate are those about the Protestant Reformation: allegories that
make use of Catholic and Protestant churches, laity, clergy, high priests, and
reformation-era images of control and liberation. It might be surprising that geeks
turn to the past (and especially to religious allegory) in order to make sense of the
present, but the reason is quite simple: there are no ”ready-to-narrate” stories that
make sense of the practices of geeks today. Precisely because geeks are ”figuring
out” things that are not clear or obvious, they are of necessity bereft of effective ways
of talking about it. The Protestant Reformation makes for good allegory because it
separates power from control; it draws on stories of catechism and ritual, alphabets,
pamphlets and liturgies, indulgences and self-help in order to give geeks a way to
make sense of the distinction between power and control, and how it relates to the
technical and political economy they occupy. The contemporary relationship among
states, corporations, small businesses, and geeks is not captured by familiar
oppositions like commercial/noncommercial, for/against private property, or
capitalist/socialistit is a relationship of reform and conversion, not revolution or
overthrow.
Usable pasts are stories, but they are stories that reflect specific attitudes and 193

specific ways of thinking about the relationship between past, present, and future.
Geeks think and talk a lot about time, progress, and change, but their conclusions
and attitudes are by no means uniform. Some geeks are much more aware of the
specific historical circumstances and contexts in which they operate, others less so.

Two Bits Christopher M. Kelty 55

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

In this chapter I pose a question via Michel [pg66] Foucaults famous short piece ”What
Is Enlightenment?” Namely, are geeks modern? For Foucault, rereading Kants
eponymous piece from 1784, the problem of being modern (or of an age being
”enlightened”) is not one of a period or epoch that people live through; rather, it
involves a subjective relationship, an attitude. Kants explanation of enlightenment
does not suggest that it is itself a universal, but that it occurs through a form of
reflection on what difference the changes of ones immediate historical past make to
ones understanding of the supposed universals of a much longer historythat is, one
must ask why it is necessary to think the way one does today about problems that
have been confronted in ages past. For Foucault, such reflections must be rooted in
the ”historically unique forms in which the generalities of our relations . . . have been
problematized.”56 Thus, I want to ask of geeks, how do they connect the historically
unique problems they confrontfrom the Internet to Napster to intellectual property to
sharing and reusing source codeto the generalities of relations in which they narrate
them as problems of liberty, knowledge, power, and enlightenment? Or, as Foucault
puts it, are they modern in this sense? Do they ”despise the present” or not?
The attitudes that geeks take in responding to these questions fall along a spectrum 194

that I have identified as ranging from ”polymaths” to ”transhumanists.” These
monikers are drawn from real discussions with geeks, but they dont designate a kind
of person. They are ”subroutines,” perhaps, called from within a larger program of
moral and technical imaginations of order. It is possible for the same person to be a
polymath at work and a transhumanist at home, but generally speaking they are
conflicting and opposite mantles. In polymath routines, technology is an intervention
into a complicated, historically unique field of people, customs, organizations, other
technologies, and laws; in transhumanist routines, technology is seen as an inevitable
forcea product of human action, but not of human designthat is impossible to control
or resist through legal or customary means.

Protestant Reformation 195

Geeks love allegories about the Protestant Reformation; they relish stories of Luther 196

and Calvin, of property and iconoclasm, of reformation [pg67] over revolution.
Allegories of Protestant revolt allow geeks to make sense of the relationship between
the state (the monarchy), large corporations (the Catholic Church), the small
start-ups, individual programmers, and adepts among whom they spend most of their
time (Protestant reformers), and the laity (known as ”lusers” and ”sheeple”). It gives
them a way to assert that they prefer reformation (to save capitalism from the
capitalists) over revolution. Obviously, not all geeks tell stories of ”religious wars” and
the Protestant Reformation, but these images reappear often enough in conversations
that most geeks will more or less instantly recognize them as a way of making sense
of modern corporate, state, and political power in the arena of information technology:
the figures of Pope, the Catholic Church, the Vatican, the monarchs of various nations,
the laity, the rebel adepts like Luther and Calvin, as well as models of sectarianism,

56Foucault, ”What Is Enlightenment,” 319.

Two Bits Christopher M. Kelty 56

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

iconoclasm (”In the beginning was the Command Line”), politicoreligious power, and
arcane theological argumentation.57 The allegories that unfold provide geeks a way
to make sense of a similarly complex modern situation in which it is not the Church
and the State that struggle, but the Corporation and the State; and what geeks
struggle over are not matters of church doctrine and organization, but matters of
information technology and its organization as intellectual property and economic
motor. I stress here that this is not an analogy that I myself am making (though I
happily make use of it), but is one that is in wide circulation among the geeks I study.
To the historian or religious critic, it may seem incomplete, or absurd, or bizarre, but it
still serves a specific function, and this is why I highlight it as one component of the
practical and technical ideas of order that geeks share.
At the first level are allegories of ”religious war” or ”holy war” (and increasingly, of 197

”jihads”). Such stories reveal a certain cynicism: they describe a technical war of
details between two pieces of software that accomplish the same thing through
different means, so devotion to one or the other is seen as a kind of arbitrary
theological commitment, at once reliant on a pure rationality and requiring aesthetic
or political judgment. Such stories imply that two technologies are equally good and
equally bad and that ones choice of sect is thus an entirely nonrational one based in
the vicissitudes of background and belief. Some people are zealous proselytizers of a
technology, some are not. As one Usenet message explains: ”Religious wars have
tended to occur over theological and doctrinal [pg68] technicalities of one sort or
another. The parallels between that and the computing technicalities that result in
computing wars are pretty strong.”58

Perhaps the most familiar and famous of these wars is that between Apple and 198

Microsoft (formerly between Apple and IBM), a conflict that is often played out in
dramatic and broad strokes that imply fundamental differences, when in fact the
differences are extremely slight.59 Geeks are also familiar with a wealth of less
well-known ”holy wars”: EMACS versus vi; KDE versus Gnome; Linux versus BSD;
Oracle versus all other databases.60

Often the language of the Reformation creeps playfully into otherwise serious 199

attempts to make aesthetic judgments about technology, as in this analysis of the
programming language tcl/tk:

Its also not clear that the primary design criterion in tcl, perl, or Visual BASIC was 200

visual beautynor, probably, should it have been. Ousterhout said people will vote
with their feet. This is important. While the High Priests in their Ivory Towers

57Stephenson, In the Beginning Was the Command Line.
58Message-ID:
⌜
59The Apple-Microsoft conflict was given memorable expression by Umberto Eco in a widely read piece
that compared the Apple user interface [pg320] to Catholicism and the PC user interface to Protestantism
(”La bustina di Minerva,” Espresso, 30 September 1994, back page).
60One entry on Wikipedia differentiates religious wars from run-of-the-mill ”flame wars” as follows:
”Whereas a flame war is usually a particular spate of flaming against a non-flamy background, a holy
war is a drawn-out disagreement that may last years or even span careers” (”Flaming [Internet],”
⌜ http://en.wikipedia.org/wiki/Flame_war ⌟ [accessed 16 January 2006]).

Two Bits Christopher M. Kelty 57

http://groups.google.com/groups?selm=tht55.221960$701.2930569@news4.giganews.com
http://en.wikipedia.org/wiki/Flame_war
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

design pristine languages of stark beauty and balanced perfection for their own
appreciation, the rest of the mundane world will in blind and contented ignorance
go plodding along using nasty little languages like those enumerated above.
These poor sots will be getting a great deal of work done, putting bread on the
table for their kids, and getting home at night to share it with them. The
difference is that the priests will shake their fingers at the laity, and the laity wont
care, because theyll be in bed asleep.61

In this instance, the ”religious war” concerns the difference between academic 201

programming languages and regular programmers made equivalent to a distinction
between the insularity of the Catholic Church and the self-help of a protestant laity:
the heroes (such as tcl/tk, perl, and pythonall Free Software) are the ”nasty little
languages” of the laity; the High Priests design (presumably) Algol, LISP, and other
”academic” languages.
At a second level, however, the allegory makes precise use of Protestant Reformation 202

details. For example, in a discussion about the various fights over the Gnu C Compiler
(gcc), a central component of the various UNIX operating systems, Christopher
Browne posted this counter-reformation allegory to a Usenet group.

The EGCS project was started around two years ago when G++ (and GCC) 203

development got pretty ”stuck.” EGCS sought to integrate together [pg69] a
number of the groups of patches that people were making to the GCC ”family.” In
effect, there had been a ”Protestant Reformation,” with split-offs of:

a) The GNU FORTRAN Denomination; 204

b) The Pentium Tuning Sect; 205

c) The IBM Haifa Instruction Scheduler Denomination; 206

d) The C++ Standard Acolytes. 207

These groups had been unable to integrate their efforts (for various reasons) with 208

the Catholic Version, GCC 2.8. The Ecumenical GNU Compiler Society sought to
draw these groups back into the Catholic flock. The project was fairly successful;
GCC 2.8 was succeeded by GCC 2.9, which was not a direct upgrade from 2.8, but
rather the results of the EGCS project. EGCS is now GCC.62

In addition to the obvious pleasure with which they deploy the sectarian aspects of 209

the Protestant Reformation, geeks also allow themselves to see their struggles as
those of Luther-like adepts, confronted by powerful worldly institutions that are
distinct but intertwined: the Catholic Church and absolutist monarchs. Sometimes
these comparisons are meant to mock theological argument; sometimes they are
more straightforwardly hagiographic. For instance, a 1998 article in Salon compares
Martin Luther and Linus Torvalds (originator of the Linux kernel).

61Message-ID:
⌜
62Message-ID:
⌜ It should be noted, in case the reader is unsure how serious this is, that EGCS stood for Extended
GNU Compiler System, not Ecumenical GNU Compiler Society.

Two Bits Christopher M. Kelty 58

http://groups.google.com/groups?selm=369tva$8l0@csnews.cs.colorado.edu
http://groups.google.com/groups?selm=c1dz4.145472$mb.2669517@news6.giganews.com
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

In Luthers Day, the Roman Catholic Church had a near-monopoly on the cultural, 210

intellectual and spiritual life of Europe. But the principal source text informing
that lifethe Biblewas off limits to ordinary people. . . . Linus Torvalds is an
information-age reformer cut from the same cloth. Like Luther, his journey began
while studying for ordination into the modern priesthood of computer scientists at
the University of Helsinkifar from the seats of power in Redmond and Silicon
Valley. Also like Luther, he had a divine, slightly nutty idea to remove the
intervening bureaucracies and put ordinary folks in a direct relationship to a
higher powerin this case, their computers. Dissolving the programmer-user
distinction, he encouraged ordinary people to participate in the development of
their computing environment. And just as Luther sought to make the entire
sacramental shebangthe wine, the bread and the translated Wordavailable to the
hoi polloi, Linus seeks to revoke the developers proprietary access to the OS,
insisting that the full operating system source code be deliveredwithout costto
every ordinary Joe at the desktop.63 [pg70]

Adepts with strong convictionsmonks and priests whose initiation and mastery are 211

evidentmake the allegory work. Other uses of Christian iconography are less, so to
speak, faithful to the sources. Another prominent personality, Richard Stallman, of
the Free Software Foundation, is prone to dressing as his alter-ego, St. IGNUcius,
patron saint of the church of EMACSa church with no god, but intense devotion to a
baroque text-processing program of undeniable, nigh-miraculous power.64

Often the appeal of Reformation-era rhetoric comes from a kind of indictment of the 212

present: despite all this high tech, super-fabulous computronic wonderfulness, we are
no less feudal, no less violent, no less arbitrary and undemocratic; which is to say,
geeks have progressed, have seen the light and the way, but the rest of societyand
especially management and marketinghave not. In this sense, Reformation allegories
are stories of how ”things never change.”
But the most compelling use of the Protestant Reformation as usable past comes in 213

the more detailed understandings geeks have of the political economy of information
technology. The allegorization of the Catholic Church with Microsoft, for instance, is a
frequent component, as in this brief message regarding start-up key combinations in
the Be operating system: ”These secret handshakes are intended to reinforce a
cabalistic high priesthood and should not have been disclosed to the laity. Forget you
ever saw this post and go by [sic] something from Microsoft.”65

More generally, large corporations like IBM, Oracle, or Microsoft are made to stand in 214

for Catholicism, while bureaucratic congresses and parliaments with their lobbyists
take on the role of absolutist monarchs and their cronies. Geeks can then see
themselves as fighting to uphold Christianity (true capitalism) against the church

63”Martin Luther, Meet Linus Torvalds,” Salon, 12 November 1998,
⌜ http://archive.salon.com/21st/feature/1998/11/12feature.html ⌟ (accessed 5 February 2005).
64See ⌜ http://www.stallman.org/saint.html ⌟ (accessed 5 February 2005) and
⌜ http://www.dina.kvl.dk/ abraham/religion/ ⌟ (accessed 5 February 2005). On EMACS, see chapter 6.
65Message-ID: 6ms27l$6e1@bgtnsc01.worldnet.att.net. In one very humorous case the comparison is
literalized ”Microsoft acquires Catholic Church” (Message-ID: gaijin-870804300-dragonwing@sec.lia.net).

Two Bits Christopher M. Kelty 59

http://archive.salon.com/21st/feature/1998/11/12feature.html
http://www.stallman.org/saint.html
http://www.dina.kvl.dk/~abraham/religion/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

(corporations) and to be reforming a way of life that is corrupted by church and
monarchs, instead of overthrowing through revolution a system they believe to be
flawed. There is a historically and technically specific component of this political
economy in which it is in the interest of corporations like IBM and Microsoft to keep
users ”locked as securely to Big Blue as an manacled wretch in a medieval
dungeon.”66

Such stories appeal because they bypass the language of modern American politics 215

(liberal, conservative, Democrat, Republican) in which there are only two sides to any
issue. They also bypass an [pg71] argument between capitalism and socialism, in which
if you are not pro-capitalism you must be a communist. They are stories that allow
the more pragmatist of the geeks to engage in intervention and reformation, rather
than revolution. Though Ive rarely heard it articulated so bluntly, the allegory often
implies that one must ”save capitalism from the capitalists,” a sentiment that implies
at least some kind of human control over capitalism.
In fact, the allegorical use of the Reformation and the church generates all kinds of 216

clever comparisons. A typical description of such comparisons might go like this: the
Catholic Church stands in for large, publicly traded corporations, especially those
controlling large amounts of intellectual property (the granting of which might roughly
be equated with the ceremonies of communion and confession) for which they
depend on the assistance and support of national governments. Naturally, it is the
storied excesses of the churchindulgences, liturgical complexity, ritualistic ceremony,
and corruptionwhich make for easy allegory. Modern corporations can be figured as a
small, elite papal body with theologians (executives and their lawyers, boards of
directors and their lawyers), who command a much larger clergy (employees), who
serve a laity (consumers) largely imagined to be sinful (underspending on music and
moviesindeed, even ”stealing” them) and thus in need of elaborate and ritualistic
cleansing (advertising and lawsuits) by the church. Access to grace (the American
Dream) is mediated only by the church and is given form through the holy acts of
shopping and home improvement. The executives preach messages of damnation to
the government, messages most government officials are all too willing to hear: do
not tamper with our market share, do not affect our pricing, do not limit our ability to
expand these markets. The executives also offer unaccountable promises of salvation
in the guise of deregulation and the American version of ”reform”the demolition of
state and national social services. Government officials in turn have developed their
own ”divine right of kings,” which justifies certain forms of manipulation (once called
”elections”) of succession. Indulgences are sold left and right by lobbyists or industry
associations, and the decrees of the papacy evidence little but full disconnection from
the miserable everyday existence of the flock.
In fact, it is remarkable how easy such comparisons become the more details of the 217

political economy of information one learns. But [pg72] allegories of the Reformation
and clerical power can lead easily to cynicism, which should perhaps be read in this
instance as evidence of political disenfranchisement, rather than a lapse in faith. And
yet the usable pasts of these reformation-minded modern monks and priests crop up

66Paul Fusco, ”The Gospel According to Joy,” New York Times, 27 March 1988, Sunday Magazine, 28.

Two Bits Christopher M. Kelty 60

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

regularly not only because they provide relief from technical chatter but because they
explain a political, technical, legal situation that does not have ready-to-narrate
stories. Geeks live in a world finely controlled by corporate organizations, mass
media, marketing departments, and lobbyists, yet they share a profound distrust of
government regulationthey need another set of just-so stories to make sense of it.
The standard unusable pasts of the freeing of markets, the inevitability of capitalism
and democracy, or more lately, the necessity of security dont do justice to their
experience.
Allegories of Reformation are stories that make sense of the political economy of 218

information. But they also have a more precise use: to make sense of the distinction
between power and control. Because geeks are ”closer to the machine” than the rest
of the laity, one might reasonably expect them to be the ones in power. This is clearly
not the case, however, and it is the frustrations and mysteries by which states,
corporations, and individuals manipulate technical details in order to shift power that
often earns the deepest ire of geeks. Control, therefore, includes the detailed
methods and actual practices by which corporations, government agencies, or
individuals attempt to manipulate people (or enroll them to manipulate themselves
and others) into making technical choices that serve power, rather than rationality,
liberty, elegance, or any other geekly concern.
Consider the subject of evil. During my conversations with Sean Doyle in the late 219

1990s, as well as with a number of other geeks, the term evil was regularly used to
refer to some kind of design or technical problem. I asked Sean what he meant.
SD: [Evil is] just a term I use to say that somethings wrong, but usually it means 220

something is wrong on purpose, there was agency behind it. I cant remember [the
example you gave] but I think it may have been some GE equipment, where it has
this default where it likes to send things in its own private format rather than in
DICOM [the radiology industry standard for digital images], if you give it a choice. I
dont know why they would have done something like that, [pg73] it doesnt solve any
backward compatibility problem, its really just an exclusionary sort of thing. So I
guess theres Evil like that. . . .
CK: one of the other examples that you had . . . was something with Internet Explorer 221

3.0?
SD: Yes, oh yes, there are so many things with IE3 that are completely Evil. Like heres 222

one of them: in the http protocol theres a thing called the ”user agent field” where a
browser announces to the server who it is. If you look at IE, it announces that it is
Mozilla, which is the [code-name for] Netscape. Why did they do this? Well because a
lot of the web servers were sending out certain code that said, if it were Mozilla they
would serve the stuff down, [if not] they would send out something very simple or
stupid that would look very ugly. But it turned out that [IE3, or maybe IE2] didnt
support things when it first came out. Like, I dont think they supported tables, and
later on, their versions of Javascript were so different that there was no way it was
compatibleit just added tremendous complexity. It was just a way of pissing on the
Internet and saying theres no law that says we have to follow these Internet
standards. We can do as we damn well please, and were so big that you cant stop us.

Two Bits Christopher M. Kelty 61

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

So I view it as Evil in that way. I mean they obviously have the talent to do it. They
obviously have the resources to do it. Theyve obviously done the work, its just that
theyll have this little twitch where they wont support a certain MIME type or theyll
support some things differently than others.
CK: But these kinds of incompatibility issues can happen as a result of a lack of 223

communication or coordination, which might involve agency at some level,
right?
SD: Well, I think of that more as Stupidity than Evil [laughter]. No, Evil is when there 224

is an opportunity to do something, and an understanding that there is an opportunity
to, and resources and all thatand then you do something just to spite the other
person. You know Im sure its like in messy divorces, where you would rather sell the
property at half its value rather than have it go to the other person.
Sean relates control to power by casting the decisions of a large corporation in a 225

moral light. Although the specific allegory of the Protestant Reformation does not
operate here, the details do. Microsofts decision to manipulate Internet Explorers
behavior stems not from a lack of technical sophistication, nor is it an ”accident” of
[pg74] complexity, according to Sean, but is a deliberate assertion of economic and
political power to corrupt the very details by which software has been created and
standardized and is expected to function. The clear goal of this activity is conversion,
the expansion of Microsofts flock through a detailed control of the beliefs and
practices (browsers and functionality) of computer users. Calling Microsoft ”Evil” in
this way has much the same meaning as questioning the Catholic Churchs use of
ritual, ceremony, literacy, and historythe details of the ”implementation” of religion,
so to speak.
Or, in the terms of the Protestant Reformation itself, the practices of conversion as 226

well as those of liberation, learning, and self-help are central to the story. It is not an
accident that many historians of the Reformation themselves draw attention to the
promises of liberation through reformation ”information technologies.”67 Colloquial
(and often academic) assertions that the printing press was technologically necessary
or sufficient to bring the Reformation about appear constantly as a parable of this
new age of information. Often the printing press is the only ”technological” cause
considered, but scholars of the real, historical Reformation also pay close attention to
the fact of widespread literacy, to circulating devotional pamphlets, catechisms, and
theological tracts, as well as to the range of transformations of political and legal
relationships that occurred simultaneously with the introduction of the printing
press.
ľ 227

One final way to demonstrate the effectiveness of these allegoriestheir ability to work 228

67See, for example, Matheson, The Imaginative World of the Reformation. There is rigorous debate
about the relation of print, religion, and capitalism: one locus classicus is Eisensteins The Printing Press
as an Agent of Change, which was inspired by McLuhan, The Gutenberg Galaxy. See also Ian Green, Print
and Protestantism in Early Modern England and The Christians ABCs; Chadwick, The Early Reformation
on the Continent, chaps. 1-3.

Two Bits Christopher M. Kelty 62

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

on the minds of geeksis to demonstrate how they have started to work on me, to
demonstrate how much of a geek I have becomea form of participant allegorization,
so to speak. The longer one considers the problems that make up the contemporary
political economy of information technology that geeks inhabit, the more likely it is
that these allegories will start to present themselves almost automaticallyas, for
instance, when I read The Story of A, a delightful book having nothing to do with
geeks, a book about literacy in early America. The author, Patricia Crain, explains that
the Christs cross (see above) was often used in the creation of hornbooks or
battledores, small leather-backed paddles inscribed with the Lords Prayer and the
alphabet, which were used [pg75] to teach children their ABCs from as early as the
fifteenth century until as late as the nineteenth: ”In its early print manifestations, the
pedagogical alphabet is headed not by the letter A but by the Christs Cross:
Because the alphabet is associated with Catholic Iconography, as if the two sets of
signs were really part of one semiological system, one of the struggles of the
Reformation would be to wrest the alphabet away from the Catholic Church.”68

Here, allegorically, the Catholic Churchs control of the alphabet (like Microsofts 229

programming of Internet Explorer to blur public standards for the Internet) is not
simply ideological; it is not just a fantasy of origin or ownership planted in the fallow
mental soil of believers, but in fact a very specific, very nonsubjective, and very
media-specific normative tool of control. Crain explains further: ”Today represents
the imprimatur of the Catholic Church on copyright pages. In its connection to the
early modern alphabet as well, this cross carries an imprimatur or licensing effect.
This let it be printed, however, is directed not to the artisan printer but to the mind
and memory of the young scholar. . . . Like modern copyright, the cross authorizes
the existence of the alphabet and associates the letters with sacred authorship,
especially since another long-lived function of in liturgical missals is to mark gospel
passages. The symbol both conveys information and generates ritual
behavior.”69

The ľ today carries as much if not more power, both ideologically and legally, as the 230

cross of the Catholic church. It is the very symbol of authorship, even though in origin
and in function it governs only ownership and rights. Magical thinking about copyright
abounds, but one important function of the symbol ľ, if not its legal implications, is to
achieve the same thing as the Christs cross: to associate in the mind of the reader
the ownership of a particular text (or in this case, piece of software) with a particular
organization or person. Furthermore, even though the symbol is an artifact of national
and international law, it creates an association not between a text and the state or
government, but between a text and particular corporations, publishers, printers, or
authors.
Like the Christs cross, the copyright symbol carries both a licensing effect (exclusive, 231

limited or nonexclusive) and an imprimatur on the minds of people: ”let it be
imprinted in memory” that this is the work of such and such an author and that this is
the property of such and such a corporation.

68Crain, The Story of A, 16-17.
69Ibid., 20-21.

Two Bits Christopher M. Kelty 63

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Without the allegory of the Protestant Reformation, the only available narrative for 232

such evilwhether it be the behavior of Microsoft or of some other corporationis that
corporations are ”competing in the marketplace according to the rules of capitalism”
and thus when geeks decry such behavior, its just sour grapes. If corporations are not
breaking any laws, why shouldnt they be allowed to achieve control in this manner? In
this narrative there is no room for a moral evaluation of competitionanything goes, it
would seem. Claiming for Microsoft that it is simply playing by the rules of capitalism
puts everyone else into either the competitor box or the noncompetitor box (the state
and other noncompetitive organizations). Using the allegory of the Protestant
Reformation, on the other hand, gives geeks a way to make sense of an unequal
distribution among competing powersbetween large and small corporations, and
between market power and the details of control. It provides an alternate imagination
against which to judge the technically and legally specific actions that corporations
and individuals take, and to imagine forms of justified action in return.
Without such an allegory, geeks who oppose Microsoft are generally forced into the 233

position of being anticapitalist or are forced to adopt the stance that all standards
should be publicly generated and controlled, a position few wish to take. Indeed,
many geeks would prefer a different kind of imaginary altogethera recursive public,
perhaps. Instead of an infrastructure subject to unequal distributions of power and
shot through with ”evil” distortions of technical control, there is, as geeks see it, the
possibility for a ”self-leveling” level playing field, an autotelic system of rules, both
technical and legal, by which all participants are expected to compete equally. Even if
it remains an imaginary, the allegory of the Protestant Reformation makes sense of
(gives order to) the political economy of the contemporary information-technology
world and allows geeks to conceive of their interests and actions according to a
narrative of reformation, rather than one of revolution or submission. In the
Reformation the interpretation or truth of Christian teaching was not primarily in
question: it was not a doctrinal revolution, but a bureaucratic one. Likewise, geeks do
not question the rightness of networks, software, or protocols and standards, nor are
they against capitalism or intellectual property, but they do wish to maintain a space
for critique and the moral evaluation of contemporary capitalism and
competition.

Polymaths and Transhumanists 234

Usable pasts articulate the conjunction of ”operating systems and social systems,” 235

giving narrative form to imaginations of moral and technical order. To say that there
are no ready-to-narrate stories about contemporary political economy means only
that the standard colloquial explanations of the state of the modern world do not do
justice to the kinds of moral and technical imaginations of order that geeks possess
by virtue of their practices. Geeks live in, and build, one kind of worlda world of
software, networks, and infrastructuresbut they are often confronted with stories and
explanations that simply dont match up with their experience, whether in newspapers
and on television, or among nongeek friends. To many geeks, proselytization seems
an obvious route: why not help friends and neighbors to understand the hidden world

Two Bits Christopher M. Kelty 64

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of networks and software, since, they are quite certain, it will come to structure their
lives as well?
Geeks gather through the Internet and, like a self-governing people, possess nascent 236

ideas of independence, contract, and constitution by which they wish to govern
themselves and resist governance by others.70 Conventional political philosophies
like libertarianism, anarchism, and (neo)liberalism only partially capture these social
imaginaries precisely because they make no reference to the operating systems,
software, and networks within which geeks live, work, and in turn seek to build and
extend.
Geeks live in specific ways in time and space. They are not just users of technology, 237

or a ”network society,” or a ”virtual community,” but embodied and imagining actors
whose affinity for one another is enabled in new ways by the tools and technologies
they have such deep affective connections to. They live in this-network-here, a
historically unique form grounded in particular social, moral, national, and historical
specificities which nonetheless relates to generalities such as progress, technology,
infrastructure, and liberty. Geeks are by no means of one mind about such
generalities though, and they often have highly developed means of thinking about
them.
Foucaults article ”What Is Enlightenment?” captures part of this problematic. For 238

Foucault, Kants understanding of modernity was an attempt to rethink the
relationship between the passage of historical time and the subjective relationship
that individuals have toward it.

Thinking back on Kants text, I wonder whether we may not envisage modernity as 239

an attitude rather than as a period of history. And by ”attitude,” I mean a mode of
relating to contemporary reality; a voluntary choice made by certain people; in
the end, a way of thinking and feeling; a way, too, of acting and behaving that at
one and the same time marks a relation of belonging and presents itself as a task.
No doubt a bit like what the Greeks called an ethos. And consequently, rather
than seeking to distinguish the ”modern era” from the ”premodern” or
”postmodern,” I think it would be more useful to try to find out how the attitude of
modernity, ever since its formation, has found itself struggling with attitudes of
”countermodernity.”71

In thinking through how geeks understand the present, the past, and the future, I 240

pose the question of whether they are ”modern” in this sense. Foucault makes use of
Baudelaire as his foil for explaining in what the attitude of modernity consists: ”For
[Baudelaire,] being modern . . . consists in recapturing something eternal that is not
beyond the present, or behind it, but within it.”72 He suggests that Baudelaires
understanding of modernity is ”an attitude that makes it possible to grasp the heroic
aspect of the present moment . . . the will to heroize the present.”73 Heroic here
70At a populist level, this was captured by John Perry Barlows ”Declaration of Independence of the
Internet,” ⌜ http://homes.eff.org/ barlow/Declaration-Final.html ⌟ .
71Foucault, ”What Is Enlightenment,” 309-10.
72Ibid., 310.
73Ibid., 310.

Two Bits Christopher M. Kelty 65

http://homes.eff.org/~barlow/Declaration-Final.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

means something like redescribing the seemingly fleeting events of the present in
terms that conjure forth the universal or eternal character that animates them. In
Foucaults channeling of Baudelaire such an attitude is incommensurable with one
that sees in the passage of the present into the future some version of autonomous
progress (whether absolute spirit or decadent degeneration), and the tag he uses for
this is ”you have no right to despise the present.” To be modern is to confront the
present as a problem that can be transformed by human action, not as an inevitable
outcome of processes beyond the scope of individual or collective human control,
that is, ”attitudes of counter-modernity.” When geeks tell stories of the past to make
sense of the future, it is often precisely in order to ”heroize” the present in this
sensebut not all geeks do so. Within the spectrum from polymath to transhumanist,
there are attitudes of both modernity and countermodernity.
The questions I raise here are also those of politics in a classical sense: Are the geeks 241

I discuss bound by an attitude toward the present that concerns such things as the
relationship of the public to the private and the social (à la Hannah Arendt), the
relationship [pg79] of economics to liberty (à la John Stuart Mill and John Dewey), or the
possibilities for rational organization of society through the application of scientific
knowledge (à la Friedrich Hayek or Foucault)? Are geeks ”enlightened”? Are they
Enlightenment rationalists? What might this mean so long after the Enlightenment
and its vigorous, wide-ranging critiques? How is their enlightenment related to the
technical and infrastructural commitments they have made? Or, to put it differently,
what makes enlightenment newly necessary now, in the milieu of the Internet, Free
Software, and recursive publics? What kinds of relationships become apparent when
one asks how these geeks relate their own conscious appreciation of the history and
politics of their time to their everyday practices and commitments? Do geeks despise
the present?
Polymaths and transhumanists speak differently about concepts like technology, 242

infrastructure, networks, and software, and they have different ideas about their
temporality and relationship to progress and liberty. Some geeks see technology as
one kind of intervention into a constituted field of organizations, money, politics, and
people. Some see it as an autonomous force made up of humans and impersonal
forces of evolution and complexity. Different geeks speak about the role of technology
and its relationship to the present and future in different ways, and how they
understand this relationship is related to their own rich understandings of the
complex technical and political environment they live and work in.
Polymaths Polymathy is ”avowed dilettantism,” not extreme intelligence. It results 243

from a curiosity that seems to grip a remarkable number of people who spend their
time on the Internet and from the basic necessity of being able to evaluate and
incorporate sometimes quite disparate fields of knowledge in order to build workable
software. Polymathy inevitably emerges in the context of large software and
networking projects; it is a creature of constraints, a process bootstrapped by the
complex sediment of technologies, businesses, people, money, and plans. It might
also be posed in the negative: bad software design is often the result of not enough
avowed dilettantism. Polymaths must know a very large and wide range of things in
order to intervene in an existing distribution of machines, people, practices, and

Two Bits Christopher M. Kelty 66

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

places. They must have a detailed sense of the present, and the project of the
present, in order to imagine how the future might be different.
My favorite polymath is Sean Doyle. Sean built the first versions of a piece of 244

software that forms the centerpiece of the radiological-image-management company
Amicas. In order to build it Sean learned the following: Java, to program it; the
mathematics of wavelets, to encode the images; the workflow of hospital radiologists
and the manner in which they make diagnoses from images, to make the interface
usable; several incompatible databases and the SQL database language, to build the
archive and repository; and manual after manual of technical standards, the largest
and most frightening of which was the Digital Imaging and Communication (DICOM)
standard for radiological images. Sean also read Science and Nature regularly,
looking for inspiration about interface design; he read books and articles about
imaging very small things (mosquito knees), very large things (galaxies and
interstellar dust), very old things (fossils), and very pretty things (butterfly-wing
patterns as a function of developmental pathways). Sean also introduced me to
Tibetan food, to Jan Svankmeyer films, to Open Source Software, to cladistics and
paleoherpetology, to Disneys scorched-earth policy with respect to culture, and to
many other awesome things.
Sean is clearly an unusual character, but not that unusual. Over the years I have met 245

many people with a similar range and depth of knowledge (though rarely with Seans
humility, which does set him apart). Polymathy is an occupational hazard for geeks.
There is no sense in which a good programmer, software architect, or information
architect simply specializes in code. Specialization is seen not as an end in itself, but
rather as a kind of technical prerequisite before other workthe real workcan be
accomplished. The real work is the design, the process of inserting usable software
into a completely unfamiliar amalgamation of people, organizations, machines, and
practices. Design is hard work, whereas the technical stufflike choosing the right
language or adhering to a standard or finding a ready-made piece of code to plug in
somewhereis not.
It is possible for Internet geeks and software architects to think this way in part due to 246

the fact that so many of the technical issues they face are both extremely well
defined and very easy to address with a quick search and download. It is easy to be
an avowed dilettante in the age of mailing lists, newsgroups, and online scientific
publishing. I myself have learned whole swaths of technical practices in this manner,
but I have designed no technology of note. [pg81]

Seans partner in Amicas, Adrian Gropper, also fits the bill of polymath, though he is 247

not a programmer. Adrian, a physician and a graduate of MITs engineering program,
might be called a ”high-functioning polymath.” He scans the horizon of technical and
scientific accomplishments, looking for ways to incorporate them into his vision of
medical technology qua intervention. Sean mockingly calls these ”delusions,” but
both agree that Amicas would be nowhere without them. Adrian and Sean exemplify
how the meanings of technology, intervention, design, and infrastructure are
understood by polymaths as a particular form of pragmatic intervention, a progress
achieved through deliberate, piecemeal re-formation of existing systems. As Adrian

Two Bits Christopher M. Kelty 67

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

comments:
I firmly believe that in the long run the only way you can save money and improve 248

healthcare is to add technology. I believe that more strongly than I believe, for
instance, that if people invent better pesticides theyll be able to grow more rice,
and its for the universal good of the world to be able to support more people. I
have some doubt as to whether I support people doing genetic engineering of
crops and pesticides as being ”to the good.” But I do, however, believe that
healthcare is different in that in the long run you can impact both the cost and
quality of healthcare by adding technology. And you can call that a religious belief
if you want, its not rational. But I guess what Im willing to say is that traditional
healthcare thats not technology-based has pretty much run out of steam.74

In this conversation, the ”technological” is restricted to the novel things that can 249

make healthcare less costly (i.e., cost-reducing, not cost-cutting), ease suffering, or
extend life. Certain kinds of technological intervention are either superfluous or even
pointless, and Adrian cant quite identify this ”class”it isnt ”technology” in general,
but it includes some kinds of things that are technological. What is more important is
that technology does not solve anything by itself; it does not obviate the political
problems of healthcare rationing: ”Now, however, you get this other problem, which
is that the way that healthcare is rationed is through the fear of pain, financial pain to
some extent, but physical pain; so if you have a technology that, for instance, makes
it relatively painless to fix . . . I guess, bluntly put, its cheaper to let people die in
most cases, and thats just undeniable. So what I find interesting in all of this, is that
most people who are dealing with the politics of healthcare [pg82] resource
management dont want to have this discussion, nobody wants to talk about this, the
doctors dont want to talk about it, because its too depressing to talk about the value
of. . . . And they dont really have a mandate to talk about technology.”75

Adrians self-defined role in this arena is as a nonpracticing physician who is also an 250

engineer and an entrepreneurhence, his polymathy has emerged from his attempts
to translate between doctors, engineers, and businesspeople. His goal is twofold:
first, create technologies that save money and improve the allocation of healthcare
(and the great dream of telemedicine concerns precisely this goal: the reallocation of
the most valuable asset, individuals and their expertise); second, to raise the level of
discussion in the business-cum-medical world about the role of technology in
managing healthcare resources. Polymathy is essential, since Adrians twofold mission
requires understanding the language and lives of at least three distinct groups who
work elbow-to-elbow in healthcare: engineers and software architects; doctors and
nurses; and businessmen.
Technology has two different meanings according to Adrians two goals: in the first 251

case technology refers to the intervention by means of new technologies (from
software, to materials, to electronics, to pharmaceuticals) in specific healthcare
situations wherein high costs or limited access to care can be affected. Sometimes
technology is allocated, sometimes it does the allocating. Adrians goal is to match his
74Adrian Gropper, interview by author, 28 November 1998.
75Adrian Gropper, interview by author, 28 November 1998.

Two Bits Christopher M. Kelty 68

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

knowledge of state-of-the-art technologyin particular, Internet technologywith a
specific healthcare situation and thereby effect a reorganization of practices, people,
tools, and information. The tool Amicas created was distinguished by its clever use of
compression, Internet standards, and cheap storage media to compete with much
larger, more expensive, much more entrenched ”legacy” and ”turnkey” systems.
Whether Amicas invented something ”new” is less interesting than the nature of this
intervention into an existing milieu. This intervention is what Adrian calls
”technology.” For Amicas, the relevant technologythe important interventionwas the
Internet, which Amicas conceived as a tool for changing the nature of the way
healthcare was organized. Their goal was to replace the infrastructure of the hospital
radiology department (and potentially the other departments as well) with the
Internet. Amicas was able to confront and reform the practices of powerful,
entrenched entities, from the administration of large [pg83] hospitals to their corporate
bedfellows, like HBOC, Agfa, Siemens, and GE.
With regard to raising the level of discussion, however, technology refers to a kind of 252

political-rhetorical argument: technology does not save the world (nor does it destroy
it); it only saves livesand it does this only when one makes particular decisions about
its allocation. Or, put differently, the means is technology, but the ends are still where
the action is at. Thus, the hype surrounding information technology in healthcare is
horrifying to Adrian: promises precede technologies, and the promises suggest that
the means can replace the ends. Large corporations that promise ”technology,” but
offer no real hard interventions (Adrians first meaning of technology) that can be
concretely demonstrated to reduce costs or improve allocation are simply a waste of
resources. Such companies are doubly frustrating because they use ”technology” as
a blinder that allows people to not think about the hard problems (the ends) of
allocation, equity, management, and organization; that is, they treat ”technology”
(the means) as if it were a solution as such.
Adrian routinely analyzes the rhetorical and practical uses of technology in healthcare 253

with this kind of subtlety; clearly, such subtlety of thought is rare, and it sets Adrian
apart as someone who understands that intervention into, and reform of, modern
organizations and styles of thought has to happen through reformationthrough the
clever use of technology by people who understand it intimatelynot through
revolution. Reformation through technical innovation is opposed here to control
through the consolidation of money and power.
In my observations, Adrian always made a point of making the technologythe 254

software tools and picture-archiving systemeasily accessible, easily demonstrable to
customers. When talking to hospital purchasers, he often said something like ”I can
show you the software, and I can tell you the price, and I can demonstrate the
problem it will solve.” In contrast, however, an array of enormous corporations with
salesmen and women (usually called consultants) were probably saying something
more like ”Your hospital needs more technology, our corporation is big and stablegive
us this much money and we will solve your problem.” For Adrian, the decision to
”hold hands,” as he put it, with the comfortably large corporation was irrational if the
hospital could instead purchase a specific technology that did a specific thing, for a
real price. [pg84]

Two Bits Christopher M. Kelty 69

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Adrians reflections on technology are also reflections on the nature of progress. 255

Progress is limited intervention structured by goals that are not set by the technology
itself, even if entrepreneurial activity is specifically focused on finding new uses and
new ideas for new technologies. But discussions about healthcare allocationwhich
Adrian sees as a problem amenable to certain kinds of technical solutionsare instead
structured as if technology did not matter to the nature of the ends. It is a point
Adrian resists: ”I firmly believe that in the long run the only way you can save money
and improve healthcare is to add technology.”
Sean is similarly frustrated by the homogenization of the concept of technology, 256

especially when it is used to suggest, for instance, that hospitals ”lag behind” other
industries with regard to computerization, a complaint usually made in order to either
instigate investment or explain failures. Sean first objects to such a homogenous
notion of ”technological.”

I actually have no idea what that means, that its lagging behind. Because 257

certainly in many ways in terms of image processing or some very high-tech
things its probably way ahead. And if that means whats on peoples desktops, ever
since 19-maybe-84 or so when I arrived at MGH [Massachusetts General Hospital]
theres been a computer on pretty much everyones desktop. . . . It seems like
most hospitals that I have been to seem to have a serious commitment to
networks and automation, etcetera. . . . I dont know about a lot of manufacturing
industriesthey might have computer consoles there, but its a different sort of
animal. Farms probably lag really far behind, I wont even talk about amusement
parks. In some sense, hospitals are very complicated little communities, and so to
say that this thing as a whole is lagging behind doesnt make much sense.76

He also objects to the notion that such a lag results in failures caused by technology, 258

rather than by something like incompetence or bad management. In fact, it might be
fair to say that, for the polymath, sometimes technology actually dissolves. Its
boundaries are not easily drawn, nor are its uses, nor are its purported ”unintended
consequences.” On one side there are rules, regulations, protocols, standards, norms,
and forms of behavior; on the other there are organizational structures, business
plans and logic, human skills, and other machines. This complex milieu requires
reform from within: it cannot be replaced wholesale; it cannot leap-frog [pg85] other
industries in terms of computerization, as intervention is always local and strategic;
and it involves a more complex relationship to the project of the present than simply
”lagging behind” or ”leaping ahead.”
Polymathyinasmuch as it is a polymathy of the lived experience of the necessity for 259

multiple expertise to suit a situationturns people into pragmatists. Technology is
never simply a solution to a problem, but always part of a series of factors. The
polymath, unlike the technophobe, can see when technology matters and when it
doesnt. The polymath has a very this-worldly approach to technology: there is neither
mystery nor promise, only human ingenuity and error. In this manner, polymaths
might better be described as Feyerabendians than as pragmatists (and, indeed, Sean
turned out to be an avid reader of Feyerabend). The polymath feels there is no single
76Sean Doyle, interview by author, 30 March 1999.

Two Bits Christopher M. Kelty 70

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

method by which technology works its magic: it is highly dependent on rules, on
patterned actions, and on the observation of contingent and contextual factors.
Intervention into this already instituted field of people, machines, tools, desires, and
beliefs requires a kind of scientific-technical genius, but it is hardly single, or even
autonomous. This version of pragmatism is, as Feyerabend sometimes refers to it,
simply a kind of awareness: of standards, of rules, of history, of possibility.77 The
polymath thus does not allow himself or herself to despise the present, but insists on
both reflecting on it and intervening in it.
Sean and Adrian are avowedly scientific and technical people; like Feyerabend, they 260

assume that their interlocutors believe in good science and the benefits of progress.
They have little patience for Luddites, for new-agers, for religious intolerance, or for
any other non-Enlightenment-derived attitude. They do not despise the present,
because they have a well-developed sense of how provisional the conventions of
modern technology and business are. Very little is sacred, and rules, when they exist,
are fragile. Breaking them pointlessly is immodest, but innovation is often itself seen
as a way of transforming a set of accepted rules or practices to other ends. Progress
is limited intervention.78

How ironic, and troubling, then, to realize that Seans and Adrians company would 261

eventually become the kind of thing they started Amicas in order to reform. Outside
of the limited intervention, certain kinds of momentum seem irresistible: the demand
for investment and funding rounds, the need for ”professional management,” [pg86]

and the inertia of already streamlined and highly conservative purchasing practices in
healthcare. For Sean and Adrian, Amicas became a failure in its success. Nonetheless,
they remain resolutely modern polymaths: they do not despise the present. As
described in Kants ”What Is Enlightenment?” the duty of the citizen is broken into
public and private: on the one hand, a duty to carry out the responsibilities of an
office; on the other, a duty to offer criticism where criticism is due, as a ”scholar” in a
reading public. Seans and Adrians endeavor, in the form of a private start-up
company, might well be understood as the expression of the scholars duty to offer
criticism, through the creation of a particular kind of technical critique of an existing
(and by their assessment) ethically suspect healthcare system. The mixture of private
capital, public institutions, citizenship, and technology, however, is something Kant
could not have knownand Sean and Adrians technical pursuits must be understood as
something more: a kind of modern civic duty, in the service of liberty and responding
to the particularities of contemporary technical life.79

Transhumanists Polymathy is born of practical and pragmatic engagement with 262

77Feyerabend, Against Method, 215-25.
78One of the ways Adrian discusses innovation is via the argument of the Harvard Business School
professor Clayton Christensens The Innovators Dilemma. It describes ”sustaining vs. disruptive”
technologies as less an issue of how technologies work or what they are made of, and more an issue of
how their success and performance are measured. See Adrian Gropper, ”The Internet as a Disruptive
Technology,” Imaging Economics, December 2001, ⌜ http://www.imagingeconomics.com/library/200112-10.asp ⌟
(accessed 19 September 2006).
79On kinds of civic duty, see Fortun and Fortun, ”Scientific Imaginaries and Ethical Plateaus in
Contemporary U.S. Toxicology.”

Two Bits Christopher M. Kelty 71

http://www.imagingeconomics.com/library/200112-10.asp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

specific situations, and in some ways is demanded by such exigencies. Opposite
polymathy, however, and leaning more toward a concern with the whole, with totality
and the universal, are attitudes that I refer to by the label transhumanism, which
concerns the mode of belief in the Timeline of Technical Progress.80

Transhumanism, the movement and the philosophy, focuses on the power of 263

technology to transcend the limitations of the human body as currently evolved.
Subscribers believebut already this is the wrong wordin the possibility of downloading
consciousness onto silicon, of cryobiological suspension, of the near emergence of
strong artificial intelligence and of various other forms of technical augmentation of
the human body for the purposes of achieving immortalityor at least, much more
life.81

Various groups could be reasonably included under this label. There are the most 264

ardent purveyors of the vision, the Extropians; there are a broad class of people who
call themselves transhumanists; there is a French-Canadian subclass, the Raelians,
who are more an alien-worshiping cult than a strictly scientific one and are bitterly
denounced by the first two; there are also the variety of cosmologists and engineers
who do not formally consider themselves [pg87] transhumanist, but whose beliefs
participate in some way or another: Stephen Hawking, Frank Tipler and John Barrow
(famous for their anthropic cosmological principle), Hans Moravic, Ray Kurzweil,
Danny Hillis, and down the line through those who embrace the cognitive sciences,
the philosophy of artificial intelligence, the philosophy of mind, the philosophy of
science, and so forth.
Historically speaking, the line of descent is diffuse. Teilhard de Chardin is broadly 265

influential, sometimes acknowledged, sometimes not (depending on the amount of
mysticism allowed). A more generally recognized starting point is Julian Huxleys
article ”Transhumanism” in New Bottles for New Wine.82 Huxleys transhumanism, like
Teilhards, has a strange whiff of Nietzsche about it, though it tends much more
strongly in the direction of the evolutionary emergence of the superman than in the
more properly moral sense Nietzsche gave it. After Huxley, the notion of
transhumanism is too easily identified with eugenics, and it has become one of a
series of midcentury subcultural currents which finds expression largely in small,
non-mainstream places, from the libertarians to Esalen.83

For many observers, transhumanists are a lunatic fringe, bounded on either side by 266

alien abductees and Ayn Rand-spouting objectivists. However, like so much of the

80There is, in fact, a very specific group of people called transhumanists, about whom I will say very
little. I invoke the label here because I think certain aspects of transhumanism are present across the
spectrum of engineers, scientists, and geeks.
81See the World Transhumanist Association, ⌜ http://transhumanism.org/ ⌟ (accessed 1 December 2003) or
the Extropy Institute, ⌜ http://www.extropy.org/ ⌟ (accessed 1 December 2003). See also Doyle, Wetwares,
and Battaglia, ”For Those Who Are Not Afraid of the Future,” for a sidelong glance.
82Huxley, New Bottles for New Wine, 13-18.
83The computer scientist Bill Joy wrote a long piece in Wired warning of the outcomes of research
conducted without ethical safeguards and the dangers of eugenics in the past, ”Why the Future Doesnt
Need Us,” Wired 8.4 [April 2000], ⌜ http://www.wired.com/wired/archive/8.04/joy.html ⌟ (accessed 27 June
2005).

Two Bits Christopher M. Kelty 72

http://transhumanism.org/
http://www.extropy.org/
http://www.wired.com/wired/archive/8.04/joy.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

fringe, it merely represents in crystalline form attitudes that seem to permeate
discussions more broadly, whether as beliefs professed or as beliefs attributed.
Transhumanism, while probably anathema to most people, actually reveals a very
specific attitude toward technical innovation, technical intervention, and political life
that is widespread among technically adept individuals. It is a belief that has
everything to do also with the timeline of progress and the role of technology in
it.
The transhumanist understanding of technological progress can best be understood 267

through the sometimes serious and sometimes playful concept of the ”singularity,”
popularized by the science-fiction writer and mathematician Vernor Vinge.84 The
”singularity” is the point at which the speed of technical progress is faster than
human comprehension of that progress (and, by implication, than human control over
the course). It is a kind of cave-man parable, perhaps most beautifully rendered by
Stanley Kubriks film 2001: A Space Odyssey (in particular, in the jump-cut early in the
film that turns a hurled bone into a spinning space station, recapitulating the
remarkable adventure of technology in two short seconds of an otherwise seemingly
endless film).

268

[* Illustration ľ 2005 Ray Kurzweil. Modifications ľ 2007 by C. Kelty. Original work
licensed under a Creative Commons Attribution License:
http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg.]
In figure 1, on the left hand of the timeline, there is history, or rather, there is a string 269

of technological inventions (by which is implied that previous inventions set the stage
for later ones) spaced such that they produce a logarithmic curve that can look very
much like the doomsday population curves that started to appear in the 1960s. Each
invention is associated with a name or sometimes a nation. Beyond the edge of the
graph to the right side is the future: history changes here from a series of inventions
to an autonomous self-inventing technology associated not with individual inventors
84Vinge, ”The Coming Technological Singularity.”

Two Bits Christopher M. Kelty 73

http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg
http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg
http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg
http://en.wikipedia.org/wiki/Image:PPTCountdowntoSingularityLog.jpg
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

but with a complex system of evolutionary adaptation that includes technological as
well as biological forms. It is a future in which ”humans” are no longer necessary to
the progress of science and technology: technology-as-extension-of-humans on the
left, a Borg-like autonomous technical intelligence on the right. The fundamental [pg89]

operation in constructing the ”singularity” is the ”reasoned extrapolation” familiar to
the ”hard science fiction” writer or the futurist. One takes present technology as the
initial condition for future possibilities and extrapolates based on the (haphazardly
handled) evidence of past technical speed-up and change.
The position of the observer is always a bit uncertain, since he or she is naturally 270

projected at the highest (or lowest, depending on your orientation) point of this curve,
but one implication is clear: that the function or necessity of human reflection on the
present will disappear at the same time that humans do, rendering enlightenment a
quaint, but necessary, step on the route to superrational, transhuman
immortality.
Strangely, the notion that technical progress has acceleration seems to precede any 271

sense of what the velocity of progress might mean in the first instance; technology is
presumed to exist in absolute timefrom the Big Bang to the heat death of the
universeand not in any relationship with human life or consciousness. The singularity
is always described from the point of view of a god who is not God. The fact of
technological speed-up is generally treated as the most obvious thing in the world,
reinforced by the constant refrain in the media of the incredible pace of change in
contemporary society.
Why is the singularity important? Because it always implies that the absolute fact of 272

technical accelerationthis knowing glance into the futureshould order the kinds of
interventions that occur in the present. It is not mute waiting or eschatological
certainty that governs this attitude; rather, it is a mode of historical consciousness
that privileges the inevitability of technological progress over the inevitability of
human power. Only by looking into the future can one manipulate the present in a
way that will be widely meaningful, an attitude that could be expressed as something
like ”Those who do not learn from the future are condemned to suffer in it.” Since it is
a philosophy based on the success of human rationality and ingenuity, rationality and
ingenuity are still clearly essential in the future. They lead, however, to a kind of
posthuman state of constant technological becoming which is inconceivable to the
individual human mindand can only be comprehended by a transcendental
intelligence that is not God.
Such is a fair description of some strands of transhumanism, and the reason I 273

highlight them is to characterize the kinds of attitudes [pg90] toward
technology-as-intervention and the ideas of moral and technical order that geeks can
evince. On the far side of polymathy, geeks are too close to the machine to see a big
picture or to think about imponderable philosophical issues; on the transhuman side,
by contrast, one is constantly reassessing the arcane details of everyday technical
change with respect to a vision of the wholea vision of the evolution of technology
and its relationship to the humans that (for the time being) must create and attempt
to channel it.

Two Bits Christopher M. Kelty 74

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

My favorite transhumanist is Eugen Leitl (who is, in fact, an authentic transhumanist 274

and has been vice-chair of the World Transhumanist Association). Eugen is
Russian-born, lives in Munich, and once worked in a cryobiology research lab. He is
well versed in chemistry, nanotechnology, artificial-intelligence (AI) research,
computational- and network-complexity research, artificial organs, cryobiology,
materials engineering, and science fiction. He writes, for example,
If you consider AI handcoded by humans, yes. However, given considerable 275

computational resources (cubic meter of computronium), and using suitable start
population, you can coevolve machine intelligence on a time scale of much less than
a year. After it achieves about a human level, it is potentially capable of entering an
autofeedback loop. Given that even autoassembly-grade computronium is capable of
running a human-grade intellect in a volume ranging from a sugar cube to an orange
at a speed ranging from
104...106itiseasytoseethattheautofeedbackloophasexplosivedynamics .

(I hope above is intelligible, Ive been exposed to weird memes for far too long).85 276

Eugen is also a polymath (and an autodidact to boot), but in the conventional sense. 277

Eugens polymathy is an avocational necessity: transhumanists need to keep up with
all advances in technology and science in order to better assess what kinds of
human-augmenting or human-obsolescing technologies are out there. It is not for
work in this world that the transhumanist expands his or her knowledge, nor quite for
the next, but for a ”this world” yet to arrive.
Eugen and I were introduced during the Napster debates of 2001, which seemed at 278

the time to be a knock-down, drag-out conflagration, but Eugen has been involved in
so many online flame wars that he probably experienced it as a mere blip in an
otherwise constant struggle with less-evolved intelligences like mine. Nonetheless,
[pg91] it was one of the more clarifying examples of how geeks think, and think
differently, about technology, infrastructure, networks, and software. Transhumanism
has no truck with old-fashioned humanism.

> >From: Ramu Narayan . . . 279

> >I dont like the
> >notion of technology as an unstoppable force with a will of its own that
> >has nothing to do with the needs of real people.

[Eugen Leitl:] Emergent large-scale behaviour is nothing new. How do you intend 280

to control individual behaviour of a large population of only partially rational
agents? They dont come with too many convenient behaviour-modifying hooks
(pheromones as in social insects, but notice menarche-synch in females sharing
quarters), and for a good reason. The few hooks we have (mob, war, politics,
religion) have been notoriously abused, already. Analogous to apoptosis,
metaindividuals may function using processes deletorious[sic] to its components

85Eugen Leitl, e-mail to Silk-list mailing list, 16 May 2000,
⌜ http://groups.yahoo.com/group/silk-list/message/2410 ⌟ .

Two Bits Christopher M. Kelty 75

http://groups.yahoo.com/group/silk-list/message/2410
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

(us).86

Eugens understanding of what ”technological progress” means is sufficiently complex 281

to confound most of his interlocutors. For one surprising thing, it is not exactly
inevitable. The manner in which Leitl argues with people is usually a kind of
machine-gun prattle of coevolutionary, game-theoretic, cryptographic sorites. Eugen
piles on the scientific and transhumanist reasoning, and his interlocutors slowly peel
away from the discussion. But it isnt craziness, hype, or half-digested popular
scienceEugen generally knows his stuffit just fits together in a way that almost no one
else can quite grasp. Eugen sees the large-scale adoption and proliferation of
technologies (particularly self-replicating molecular devices and evolutionary
software algorithms) as a danger that transcends all possibility of control at the
individual or state level. Billions of individual decisions do not ”average” into one will,
but instead produce complex dynamics and hang perilously on initial conditions. In
discussing the possibility of the singularity, Eugen suggests, ”It could literally be a
science-fair project [that causes the singularity].” If Francis Bacons understanding of
the relation between Man and Nature was that of master and possessor, Eugens is its
radicalization: Man is a powerful but ultimately arbitrary force in the progress of
Life-Intelligence. Man is fully incorporated into Nature in this story, [pg92] so much so
that he dissolves into it. Eugen writes, when ”life crosses over into this petri dish
which is getting readied, things will become a lot more lively. . . . I hope well make
it.”
For Eugen, the arguments about technology that the polymaths involve themselves in 282

couldnt be more parochial. They are important only insofar as they will set the ”initial
conditions” for the grand coevolutionary adventure of technology ahead of us. For the
transhumanist, technology does not dissolve. Instead, it is the solution within which
humans are dissolved. Suffering, allocation, decision makingall these are inessential
to the ultimate outcome of technological progress; they are worldly affairs, even if
they concern life and death, and as such, they can be either denounced or supported,
but only with respect to fine-tuning the acceleration toward the singularity. For the
transhumanist, one cant fight the inevitability of technical evolution, but one certainly
can contribute to it. Technical progress is thus both law-like and subject to intelligent
manipulation; technical progress is inevitable, but only because of the power of
massively parallel human curiosity.
Considered as one of the modes of thought present in this-worldly political discussion, 283

the transhumanist (like the polymath) turns technology into a rhetorical argument.
Technology is the more powerful political argument because ”it works.” It is pointless
to argue ”about” technology, but not pointless to argue through and with it. It is
pointless to talk about whether stopping technology is good or bad, because
someone will simply build a technology that will invalidate your argument.
There is still a role for technical invention, but it is strongly distinguished from 284

political, legal, cultural, or social interventions. For most transhumanists, there is no
rhetoric here, no sophistry, just the pure truth of ”it works”: the pure, undeniable,
86Eugen Leitl, e-mail to Silk-list mailing list, 7 August 2000,
⌜ http://groups.yahoo.com/group/silk-list/message/2932 ⌟ .

Two Bits Christopher M. Kelty 76

http://groups.yahoo.com/group/silk-list/message/2932
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

unstoppable, and undeconstructable reality of technology. For the transhumanist
attitude, the reality of ”working code” has a reality that other assertions about the
world do not. Extreme transhumanism replaces the life-world with the world of the
computer, where bad (ethically bad) ideas wont compile. Less-staunch versions of
transhumanism simply allow the confusion to operate opportunistically: the progress
of technology is unquestionable (omniscient), and only its effects on humans are
worth investigating.
The pure transhumanist, then, is a countermodern. The transhumanist despises the 285

present for its intolerably slow descent into the [pg93] future of immortality and
superhuman self-improvement, and fears destruction because of too much turbulent
(and ignorant) human resistance. One need have no individual conception of the
present, no reflection on or synthetic understanding of it. One only need contribute to
it correctly. One might even go so far as to suggest that forms of reflection on the
present that do not contribute to technical progress endanger the very future of
life-intelligence. Curiosity and technical innovation are not historical features of
Western science, but natural features of a human animal that has created its own
conditions for development. Thus, the transhumanists historical consciousness
consists largely of a timeline that makes ordered sense of our place on the progress
toward the Singularity.
The moral of the story is not just that technology determines history, however. 286

Transhumanism is a radically antihumanist position in which human agency or willif it
even existsis not ontologically distinct from the agency of machines and animals and
life itself. Even if it is necessary to organize, do things, make choices, participate,
build, hack, innovate, this does not amount to a belief in the ability of humans to
control their destiny, individually or collectively. In the end, the transhumanist cannot
quite pinpoint exactly what part of this story is inevitableexcept perhaps the story
itself. Technology does not develop without millions of distributed humans
contributing to it; humans cannot evolve without the explicit human adoption of
life-altering and identity-altering technologies; evolution cannot become inevitable
without the manipulation of environments and struggles for fitness. As in the dilemma
of Calvinism (wherein one cannot know if one is saved by ones good works), the
transhumanist must still create technology according to the particular and parochial
demands of the day, but this by no means determines the eventual outcome of
technological progress. It is a sentiment well articulated by Adam Ferguson and
highlighted repeatedly by Friederich Hayek with respect to human society: ”the result
of human action, but not the execution of any human design.”87

Conclusion 287

To many observers, geeks exhibit a perhaps bewildering mix of liberalism, 288

libertarianism, anarchism, idealism, and pragmatism, [pg94] yet tend to fall firmly into
one or another constituted political category (liberal, conservative, socialist,
capitalist, neoliberal, etc.). By showing how geeks make use of the Protestant
87Friedrich A. Hayek, Law, Legislation and Liberty, 1:20.

Two Bits Christopher M. Kelty 77

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Reformation as a usable past and how they occupy a spectrum of beliefs about
progress, liberty, and intervention, I hope to resist this urge to classify. Geeks are an
interesting case precisely because they are involved in the creation of new things that
change the meaning of our constituted political categories. Their politics are mixed
up and combined with the technical details of the Internet, Free Software, and the
various and sundry organizations, laws, people, and practices that they deal with on a
regular basis: operating systems and social systems. But such mixing does not make
Geeks merely technoliberals or technoconservatives. Rather, it reveals how they
think through the specific, historically unique situation of the Internet to the general
problems of knowledge and power, liberty and enlightenment, progress and
intervention.
Geeks are not a kind of person: geeks are geeks only insofar as they come together 289

in new, technically mediated forms of their own creation and in ways that are not
easy to identify (not language, not culture, not markets, not nations, not telephone
books or databases). While their affinity is very clearly constituted through the
Internet, the Internet is not the only reason for that affinity. It is this collective affinity
that I refer to as a recursive public. Because it is impossible to understand this affinity
by trying to identify particular types of people, it is necessary to turn to historically
specific sets of practices that form the substance of their affinity. Free Software is an
exemplary caseperhaps the exemplarof a recursive public. To understand Free
Software through its changing practices not only gives better access to the life-world
of the geek but also reveals how the structure of a recursive public comes into being
and manages to persist and transform, how it can become a powerful form of life that
extends its affinities beyond technophile geeks into the realms of ordinary life.

Two Bits Christopher M. Kelty 78

https://twobits.net
https://kelty.org/

Part II free software 290

Two Bits Christopher M. Kelty 79

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

3.The Movement 291

Part II of Two Bits describes what Free Software is and where it came from, with each 292

of its five chapters detailing the historical narrative of a particular kind of practice:
creating a movement, sharing source code, conceptualizing openness or open
systems, writing copyright (and copyleft) licenses, and coordinating collaborations.
Taken together, the stories describe Free Software. The stories have their endpoint (or
starting point, genealogically speaking) in the years 1998-99, when Free Software
burst onto the scene: on the cover of Forbes magazine, as part of the dotcom boom,
and in the boardrooms of venture-capital firms and corporations like IBM and
Netscape. While the chapters that make up part II can be read discretely to
understand the practices that are the sine qua non of Free Software, they can also be
read continuously, as a meandering story of the history of software and networks
stretching from the late 1950s to the present.
Rather than define what makes Free Software free or Open Source open, Two Bits 293

treats the five practices as parts of a collective technical experimental system: each
component has its own history, development, and temporality, but they come
together as a package and emerge as a recognizable thing around 1998-99. As with
any experimental system, changing the components changes the operation and
outcomes of the whole. Free Software so conceived is a kind of experimental system:
its practices can be adopted, adapted, and modulated in new contexts and new
places, but it is one whose rules are collectively determined and frequently modified.
It is possible to see in each of the five practices where choices about how to do Free
Software reached, or surpassed, certain limits, but nonetheless remained part of a
system whose identity finally firmed up in the period 1998-99 and after.
The first of these practicesthe making of Free Software into a movementis both the 294

most immediately obvious and the most difficult to grasp. By the term movement I
refer to the practice, among geeks, of arguing about and discussing the structure and
meaning of Free Software: what it consists of, what it is for, and whether or not it is a
movement. Some geeks call Free Software a movement, and some dont; some talk
about the ideology and goals of Free Software, and some dont; some call it Free
Software, while others call it Open Source. Amid all this argument, however, Free
Software geeks recognize that they are all doing the same thing: the practice of
creating a movement is the practice of talking about the meaning and necessity of
the other four practices. It was in 1998-99 that geeks came to recognize that they
were all doing the same thing and, almost immediately, to argue about why.88

88For instance, Richard Stallman writes, ”The Free Software movement and the Open Source movement
are like two political camps within the free software community. Radical groups in the 1960s developed
a reputation for factionalism: organizations split because of disagreements on details of strategy, and
then treated each other as enemies. Or at least, such is the [pg322] image people have of them, whether or
not it was true. The relationship between the Free Software movement and the Open Source movement
is just the opposite of that picture. We disagree on the basic principles, but agree more or less on the
practical recommendations. So we can and do work together on many specific projects. We dont think of
the Open Source movement as an enemy. The enemy is proprietary software” (”Why Free Software Is
Better than Open Source,” GNUs Not Unix! ⌜ http://www.gnu.org/philosophy/free-software-for-freedom.html ⌟
[accessed 9 July 2006]). By contrast, the Open Source Initiative characterizes the relationship as follows:

Two Bits Christopher M. Kelty 80

http://www.gnu.org/philosophy/free-software-for-freedom.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

One way to understand the movement is through the story of Netscape and the 295

Mozilla Web browser (now known as Firefox). Not only does this story provide some
context for the stories of geeks presented in part Iand I move here from direct
participant observation to historical and archival research on a phenomenon that was
occurring at roughly the same timebut it also contains all the elements necessary to
understand Free Software. It is full of discussion and argument about the practices
that make up Free Software: sharing source code, conceiving of openness, writing
licenses, and coordinating collaborations.

Forking Free Software, 1997-2000 296

Free Software forked in 1998 when the term Open Source suddenly appeared (a term 297

previously used only by the CIA to refer to unclassified sources of intelligence). The
two terms resulted in two separate kinds of narratives: the first, regarding Free
Software, stretched back into the 1980s, promoting software freedom and resistance
to proprietary software ”hoarding,” as Richard Stallman, the head of the Free
Software Foundation, refers to it; the second, regarding Open Source, was associated
with the dotcom boom and the evangelism of the libertarian pro-business hacker Eric
Raymond, who focused on the economic value and cost savings that Open Source
Software represented, including the pragmatic (and polymathic) approach that
governed the everyday use of Free Software in some of the largest online start-ups
(Amazon, Yahoo!, HotWired, and others all ”promoted” Free Software by using it to
run their shops).
A critical point in the emergence of Free Software occurred in 1998-99: new names, 298

new narratives, but also new wealth and new stakes. ”Open Source” was premised on
dotcom promises of cost-cutting and ”disintermediation” and various other schemes
to make money on it (Cygnus Solutions, an early Free Software company, playfully
tagged itself as ”Making Free Software More Affordable”). VA Linux, for instance,
which sold personal-computer systems pre-installed with Open Source operating
systems, had the largest single initial public offering (IPO) of the stock-market bubble,
seeing a 700 percent share-price increase in one day. ”Free Software” by contrast
fanned kindling flames of worry over intellectual-property expansionism and hitched
itself to a nascent legal resistance to the 1998 Digital Millennium Copyright Act and
Sonny Bono Copyright Term Extension Act. Prior to 1998, Free Software referred either
to the Free Software Foundation (and the watchful, micromanaging eye of Stallman)
or to one of thousands of different commercial, avocational, or university-research
projects, processes, licenses, and ideologies that had a variety of names: sourceware,

”How is open source related to free software? The Open Source Initiative is a marketing program for free
software. Its a pitch for free software because it works, not because its the only right thing to do. Were
selling freedom on its merits” (⌜ http://www.opensource.org/advocacy/faq.php ⌟ [accessed 9 July 2006]). There
are a large number of definitions of Free Software: canonical definitions include Richard Stallmans
writings on the Free Software Foundations Web site, www.fsf.org, including the ”Free Software Definition”
and ”Confusing Words and Phrases that Are Worth Avoiding.” From the Open Source side there is the
”Open Source Definition” (⌜ http://www.opensource.org/licenses/ ⌟). Unaffiliated definitions can be found at
www.freedomdefined.org.

Two Bits Christopher M. Kelty 81

http://www.opensource.org/advocacy/faq.php
http://www.opensource.org/licenses/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

freeware, shareware, open software, public domain software, and so on. The term
Open Source, by contrast, sought to encompass them all in one movement.
The event that precipitated this attempted semantic coup détat was the release of 299

the source code for Netscapes Communicator [pg100] Web browser. Its tough to
overestimate the importance of Netscape to the fortunes of Free Software. Netscape
is justly famous for its 1995 IPO and its decision to offer its core product, Netscape
Navigator, for free (meaning a compiled, binary version could be downloaded and
installed ”for zero dollars”). But Netscape is far more famous among geeks for giving
away something else, in 1998: the source code to Netscape Communicator (née
Navigator). Giving away the Navigator application endeared Netscape to customers
and confused investors. Giving away the Communicator source code in 1998
endeared Netscape to geeks and confused investors; it was ignored by
customers.
Netscape is important from a number of perspectives. Businesspeople and investors 300

knew Netscape as the pet project of the successful businessman Jim Clarke, who had
founded the specialty computer manufacturer, Silicon Graphics Incorporated (SGI). To
computer scientists and engineers, especially in the small university town of
Champaign-Urbana, Illinois, Netscape was known as the highest bidder for the WWW
team at the National Center for Supercomputing Applications (NCSA) at the University
of Illinois. That teamMarc Andreessen, Rob McCool, Eric Bina, Jon Mittelhauser, Aleks
Totic, and Chris Houckhad created Mosaic, the first and most fondly remembered
”graphical browser” for surfing the World Wide Web. Netscape was thus first known as
Mosaic Communications Corporation and switched its name only after legal threats
from NCSA and a rival firm, Spyglass. Among geeks, Netscape was known as home to
a number of Free Software hackers and advocates, most notably Jamie Zawinski, who
had rather flamboyantly broken rank with the Free Software Foundation by forking the
GNU EMACS code to create what was first known as Lucid Emacs and later as XEmacs.
Zawinski would go on to lead the newly free Netscape browser project, now known as
Mozilla.
Meanwhile, most regular computer users remember Netscape both as an emblem of 301

the dotcom booms venture-fed insanity and as yet another of Microsofts victims.
Although Netscape exploded onto the scene in 1995, offering a feature-rich browser
that was an alternative to the bare-bones Mosaic browser, it soon began to lose
ground to Microsoft, which relatively quickly adopted the strategy of giving away its
browser, Internet Explorer, as if it were part of the Windows operating system; this
was a practice that the U.S. Department of Justice eventually found to be in violation
of [pg101] antitrust laws and for which Microsoft was convicted, but never
punished.
The nature of Netscapes decision to release the source code differs based on which 302

perspective it is seen from. It could appear to be a business plan modeled on the
original success: give away your product and make money in the stock market. It
could appear to be a strategic, last-gasp effort to outcompete Microsoft. It could also
appear, and did appear to many geeks, to be an attempt to regain some of that
”hacker-cred” it once had acquired by poaching the NCSA team, or even to be an

Two Bits Christopher M. Kelty 82

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

attempt to ”do the right thing” by making one of the worlds most useful tools into
Free Software. But why would Netscape reach such a conclusion? By what reasoning
would such a decision seem to be correct? The reasons for Netscapes decision to
”free the source” recapitulate the five core practices of Free Softwareand provided
key momentum for the new movement.
Sharing Source Code Netscapes decision to share its source code could only seem 303

surprising in the context of the widespread practice of keeping source code secret;
secrecy was a practice followed largely in order to prevent competitors from copying
a program and competing with it, but also as a means to control the market itself. The
World Wide Web that Andreessens team at NCSA had cut their teeth on was itself
designed to be ”platform independent” and accessible by any device on the network.
In practice, however, this meant that someone needed to create ”browsers” for each
different computer or device. Mosaic was initially created for UNIX, using the Motif
library of the X11 Window Systemin short, a very specific kind of access. Netscape, by
contrast, prided itself on ”porting” Netscape Navigator to nearly all available
computer architectures. Indeed, by 1997, plans were under way to create a version of
the browserwritten in Java, the programming language created by Sun Microsystems
to ”write once, run anywhere”that would be completely platform independent.
The Java-based Navigator (called Javagator, of course) created a problem, however, 304

with respect to the practice of keeping source code secret. Whenever a program in
Java was run, it created a set of ”bytecodes” that were easy to reverse-engineer
because they had to be transmitted from the server to the machine that ran the
program and were thus visible to anyone who might know how and where to look.
Netscape engineers flirted with the idea of deliberately [pg102] obfuscating these
bytecodes to deter competitors from copying them. How can one compete, the logic
goes, if anyone can copy your program and make their own ersatz version?
Zawinski, among others, suggested that this was a bad idea: why not just share the 305

source code and get people to help make it better? As a longtime participant in Free
Software, Zawinski understood the potential benefits of receiving help from a huge
pool of potential contributors. He urged his peers at Netscape to see the light.
However, although he told them stories and showed them successes, he could never
make the case that this was an intelligent business plan, only that it was an efficient
software-engineering plan. From the perspective of management and investors, such
a move seemed tantamount to simply giving away the intellectual property of the
company itself.
Frank Hecker, a sales manager, made the link between the developers and 306

management: ”It was obvious to [developers] why it was important. It wasnt really
clear from a senior management level why releasing the source code could be of use
because nobody ever made the business case.”89 Hecker penned a document called
”Netscape Source Code as Netscape Product” and circulated it to various people,
including Andreessen and Netscape CEO Jim Barksdale. As the title suggests, the
business case was that the source code could also be a product, and in the context of
Netscape, whose business model was ”give it away and make it up on the stock
89Moody, Rebel Code, 193.

Two Bits Christopher M. Kelty 83

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

market,” such a proposal seemed less insane than it otherwise might have: ”When
Netscape first made Navigator available for unrestricted download over the Internet,
many saw this as flying in the face of conventional wisdom for the commercial
software business, and questioned how we could possibly make money giving our
software away. Now of course this strategy is seen in retrospect as a successful
innovation that was a key factor in Netscapes rapid growth, and rare is the software
company today that does not emulate our strategy in one way or another. Among
other things, this provokes the following question: What if we were to repeat this
scenario, only this time with source code?”90

Under the influence of Hecker, Zawinski, and CTO Eric Hahn (who had also written 307

various internal ”heresy documents” suggesting similar approaches), Netscape
eventually made the decision to share their source code with the outside world, a
decision that resulted in a famous January 1998 press release describing the aims
[pg103] and benefits of doing so. The decision, at that particular point in Netscapes life,
and in the midst of the dotcom boom, was certainly momentous, but it did not lead
either to a financial windfall or to a suddenly superior product.91

Conceptualizing Open Systems Releasing the source code was, in a way, an 308

attempt to regain the trust of the people who had first imagined the www. Tim
Berners-Lee, the initial architect of the www, was always adamant that the protocol
and all its implementations should be freely available (meaning either ”in the public
domain” or ”released as Free Software”). Indeed, Berners-Lee had done just that with
his first bare-bones implementations of the www, proudly declaring them to be in the
public domain.
Over the course of the 1990s, the ”browser wars” caused both Netscape and 309

Microsoft to stray far from this vision: each had implemented its own extensions and
”features” to the browsers and servers, extensions not present in the protocol that
Berners-Lee had created or in the subsequent standards created by the World Wide
Web Consortium (W3C). Included in the implementations were various kinds of ”evil”
that could make browsers fail to work on certain operating systems or with certain
kinds of servers. The ”browser wars” repeated an open-systems battle from the
1980s, one in which the attempt to standardize a network operating system (UNIX)
was stymied by competition and secrecy, at the same time that consortiums devoted
to ”openness” were forming in order to try to prevent the spread of evil. Despite the
fact that both Microsoft and Netscape were members of the W3C, the
noncompatibility of their browsers clearly represented the manipulation of the
standards process in the name of competitive advantage.
Releasing the source code for Communicator was thus widely seen as perhaps the 310

only way to bypass the poisoned well of competitively tangled, nonstandard browser
implementations. An Open Source browser could be made to comply with the
standardsif not by the immediate members involved with its creation, then by
creating a ”fork” of the program that was standards compliantbecause of the rights of
redistribution associated with an Open Source license. Open Source would be the
90Frank Hecker, quoted in Hamerly and Paquin, ”Freeing the Source,” 198.
91See Moody, Rebel Code, chap. 11, for a more detailed version of the story.

Two Bits Christopher M. Kelty 84

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

solution to an open-systems problem that had never been solved because it had
never confronted the issue of intellectual property directly. Free Software, by contrast,
had a well-developed solution in the GNU General Public License, [pg104] also known as
copyleft license, that would allow the software to remain free and revive hope for
maintaining open standards.
Writing Licenses Herein lies the rub, however: Netscape was immediately 311

embroiled in controversy among Free Software hackers because it chose to write its
own bespoke licenses for distributing the source code. Rather than rely on one of the
existing licenses, such as the GNU GPL or the Berkeley Systems Distribution (BSD) or
MIT licenses, they created their own: the Netscape Public License (NPL) and the
Mozilla Public License. The immediate concerns of Netscape had to do with their
existing network of contracts and agreements with other, third-party developersboth
those who had in the past contributed parts of the existing source code that Netscape
might not have the rights to redistribute as Free Software, and those who were
expecting in the future to buy and redistribute a commercial version. Existing Free
Software licenses were either too permissive, giving to third parties rights that
Netscape itself might not have, or too restrictive, binding Netscape to make source
code freely available (the GPL) when it had already signed contracts with buyers of
the nonfree code.
It was a complex and specific business situationa network of existing contracts and 312

licensed codethat created the need for Netscape to write its own license. The NPL
thus contained a clause that allowed Netscape special permission to relicense any
particular contribution to the source code as a proprietary product in order to
appease its third-party contracts; it essentially gave Netscape special rights that no
other licensee would have. While this did not necessarily undermine the Free
Software licensesand it was certainly Netscapes prerogativeit was contrary to the
spirit of Free Software: it broke the ”recursive public” into two halves. In order to
appease Free Software geeks, Netscape wrote one license for existing code (the NPL)
and a different license for new contributions: the Mozilla Public License.
Neither Stallman nor any other Free Software hacker was entirely happy with this 313

situation. Stallman pointed out three flaws: ”One flaw sends a bad philosophical
message, another puts the free software community in a weak position, while the
third creates a major practical problem within the free software community. Two of
the flaws apply to the Mozilla Public License as well.” He urged people [pg105] not to
use the NPL. Similarly, Bruce Perens suggested, ”Many companies have adopted a
variation of the MPL [sic] for their own programs. This is unfortunate, because the NPL
was designed for the specific business situation that Netscape was in at the time it
was written, and is not necessarily appropriate for others to use. It should remain the
license of Netscape and Mozilla, and others should use the GPL or the BSD or X
licenses.”92

Arguments about the fine details of licenses may seem scholastic, but the decision 314

had a huge impact on the structure of the new product. As Steven Weber has pointed
out, the choice of license tracks the organization of a product and can determine who
92Bruce Perens, ”The Open Source Definition,” 184.

Two Bits Christopher M. Kelty 85

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and what kinds of contributions can be made to a project.93 It is not an idle choice;
every new license is scrutinized with the same intensity or denounced with the same
urgency.
Coordinating Collaborations One of the selling points of Free Software, and 315

especially of its marketing as Open Source, is that it leverages the work of thousands
or hundreds of thousands of volunteer contributors across the Internet. Such a claim
almost inevitably leads to spurious talk of ”self-organizing” systems and emergent
properties of distributed collaboration. The Netscape press release promised to
”harness the creative power of thousands of programmers on the Internet by
incorporating their best enhancements,” and it quoted CEO Jim Barksdale as saying,
”By giving away the source code for future versions, we can ignite the creative
energies of the entire Net community and fuel unprecedented levels of innovation in
the browser market.”94 But as anyone who has ever tried to start or run a Free
Software project knows, it never works out that way.
Software engineering is a notoriously hard problem.95 The halls of the software 316

industry are lined with the warning corpses of dead software methodologies.
Developing software in the dotcom boom was no different, except that the speed of
release cycles and the velocity of funding (the ”burn rate”) was faster than ever
before. Netscapes in-house development methodologies were designed to meet
these pressures, and as many who work in this field will attest, that method is some
version of a semistructured, deadline-driven, caffeine- and smart-drink-fueled race to
”ship.”96

Releasing the Mozilla code, therefore, required a system of coordination that would 317

differ from the normal practice of in-house [pg106] software development by paid
programmers. It needed to incorporate the contributions of outsidersdevelopers who
didnt work for Netscape. It also needed to entice people to contribute, since that was
the bargain on which the decision to free the source was based, and to allow them to
track their contributions, so they could verify that their contributions were included or
rejected for legitimate reasons. In short, if any magical Open Source self-organization
were to take place, it would require a thoroughly transparent, Internet-based
coordination system.
At the outset, this meant practical things: obtaining the domain name mozilla.org; 318

setting up (and in turn releasing the source code for) the version-control system (the
Free Software standard cvs), the version-control interface (Bonsai), the ”build system”
that managed and displayed the various trees and (broken) branches of a complex
software project (Tinderbox), and a bug-reporting system for tracking bugs submitted
by users and developers (Bugzilla). It required an organizational system within the
93Steven Weber, The Success of Open Source.
94”Netscape Announces Plans to Make Next-Generation Communicator Source Code Available Free on
the Net,” Netscape press release, 22 January 1998, ⌜ http://wp.netscape.com/newsref/pr/newsrelease558.html ⌟
(accessed 25 Sept 2007).
95On the history of software development methodologies, see Mahoney, ”The Histories of
Computing(s)” and ”The Roots of Software Engineering.”
96Especially good descriptions of what this cycle is like can be found in Ullman, Close to the Machine
and The Bug.

Two Bits Christopher M. Kelty 86

http://wp.netscape.com/newsref/pr/newsrelease558.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Mozilla project, in which paid developers would be assigned to check submissions
from inside and outside, and maintainers or editors would be designated to look at
and verify that these contributions should be used.
In the end, the release of the Mozilla source code was both a success and a failure. Its 319

success was long in coming: by 2004, the Firefox Web browser, based on Mozilla, had
started to creep up the charts of most popular browsers, and it has become one of
the most visible and widely used Free Software applications. The failure, however,
was more immediate: Mozilla failed to reap the massive benefits for Netscape that
the 1995 give-away of Netscape Navigator had. Zawinski, in a public letter of
resignation in April 1999 (one year after the release), expressed this sense of failure.
He attributed Netscapes decline after 1996 to the fact that it had ”stopped
innovating” and become too large to be creative, and described the decision to free
the Mozilla source code as a return to this innovation: ”[The announcement] was a
beacon of hope to me. . . . [I]t was so crazy, it just might work. I took my cue and ran
with it, registering the domain that night, designing the structure of the organization,
writing the first version of the web site, and, along with my co-conspirators,
explaining to room after room of Netscape employees and managers how free
software worked, and what we had to do to make it work.”97 For Zawinski, the
decision was both a chance for Netscape to return to its glory and an opportunity
[pg107] to prove the power of Free Software: ”I saw it as a chance for the code to
actually prosper. By making it not be a Netscape project, but rather, be a public
project to which Netscape was merely a contributor, the fact that Netscape was no
longer capable of building products wouldnt matter: the outsiders would show
Netscape how its done. By putting control of the web browser into the hands of
anyone who cared to step up to the task, we would ensure that those people would
keep it going, out of their own self-interest.”98

But this promise didnt come trueor, at least, it didnt come true at the speed that 320

Zawinski and others in the software world were used to. Zawinski offered various
reasons: the project was primarily made up of Netscape employees and thus still
appeared to be a Netscape thing; it was too large a project for outsiders to dive into
and make small changes to; the code was too ”crufty,” that is, too complicated,
overwritten, and unclean. Perhaps most important, though, the source code was not
actually working: ”We never distributed the source code to a working web browser,
more importantly, to the web browser that people were actually using.”99

Netscape failed to entice. As Zawinski put it, ”If someone were running a web 321

browser, then stopped, added a simple new command to the source, recompiled, and
had that same web browser plus their addition, they would be motivated to do this
again, and possibly to tackle even larger projects.”100 For Zawinski, the failure to
”ship” a working browser was the biggest failure, and he took pains to suggest that
this failure was not an indictment of Free Software as such: ”Let me assure you that

97Jamie Zawinski, ”resignation and postmortem,” 31 March 1999, ⌜ http://www.jwz.org/gruntle/nomo.html ⌟ .
98Ibid.
99Ibid.

100Ibid.

Two Bits Christopher M. Kelty 87

http://www.jwz.org/gruntle/nomo.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

whatever problems the Mozilla project is having are not because open source doesnt
work. Open source does work, but it is most definitely not a panacea. If theres a
cautionary tale here, it is that you cant take a dying project, sprinkle it with the magic
pixie dust of open source, and have everything magically work out. Software is hard.
The issues arent that simple.”101

Fomenting Movements The period from 1 April 1998, when the Mozilla source code 322

was first released, to 1 April 1999, when Zawinski announced its failure, couldnt have
been a headier, more exciting time for participants in Free Software. Netscapes
decision to release the source code was a tremendous opportunity for geeks involved
in Free Software. It came in the midst of the rollicking dotcom bubble. It also came in
the midst of the widespread adoption of [pg108] key Free Software tools: the Linux
operating system for servers, the Apache Web server for Web pages, the perl and
python scripting languages for building quick Internet applications, and a number of
other lower-level tools like Bind (an implementation of the DNS protocol) or sendmail
for e-mail.
Perhaps most important, Netscapes decision came in a period of fevered and intense 323

self-reflection among people who had been involved in Free Software in some way,
stretching back to the mid-1980s. Eric Raymonds article ”The Cathedral and The
Bazaar,” delivered at the Linux Kongress in 1997 and the OReilly Perl Conference the
same year, had started a buzz among Free Software hackers. It was cited by Frank
Hecker and Eric Hahn at Netscape as one of the sources for their thinking about the
decision to free Mozilla; Raymond and Bruce Perens had both been asked to consult
with Netscape on Free Software strategy. In April of the same year Tim OReilly, a
publisher of handbooks for Free Software, organized a conference called the Freeware
Summit.
The Freeware Summits very name indicated some of the concern about definition and 324

direction. Stallman, despite his obvious centrality, but also because of it, was not
invited to the Freeware Summit, and the Free Software Foundation was not held up as
the core philosophical guide of this event. Rather, according to the press release
distributed after the meeting, ”The meetings purpose was to facilitate a high-level
discussion of the successes and challenges facing the developers. While this type of
software has often been called freeware or free software in the past, the developers
agreed that commercial development of the software is part of the picture, and that
the terms open source or sourceware best describe the development method they
support.”102

It was at this summit that Raymonds suggestion of ”Open Source” as an alternative 325

name was first publicly debated.103 Shortly thereafter, Raymond and Perens created
the Open Source Initiative and penned ”The Open Source Definition.” All of this
self-reflection was intended to capitalize on the waves of attention being directed at

101Ibid.
102”Open Source Pioneers Meet in Historic Summit,” press release, 14 April 1998, OReilly Press,
⌜ http://press.oreilly.com/pub/pr/796 ⌟ .
103See Hamerly and Paquin, ”Freeing the Source.” The story is elegantly related in Moody, Rebel Code,
182-204. Raymond gives Christine Petersen of the Foresight Institute credit for the term open source.

Two Bits Christopher M. Kelty 88

http://press.oreilly.com/pub/pr/796
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Free Software in the wake of Netscapes announcement.
The motivations for these changes came from a variety of sourcesranging from a 326

desire to be included in the dotcom boom to a powerful (ideological) resistance to
being ideological. Linus Torvalds loudly proclaimed that the reason to do Free
Software was because it was ”fun”; others insisted that it made better business [pg109]

sense or that the stability of infrastructures like the Internet depended on a robust
ability to improve them from any direction. But none of them questioned how Free
Software got done or proposed to change it.
Raymonds paper ”The Cathedral and the Bazaar” quickly became the most widely 327

told story of how Open Source works and why it is important; it emphasizes the
centrality of novel forms of coordination over the role of novel copyright licenses or
practices of sharing source code. ”The Cathedral and the Bazaar” reports Raymonds
experiments with Free Software (the bazaar model) and reflects on the difference
between it and methodologies adopted by industry (the cathedral model). The paper
does not truck with talk of freedom and has no denunciations of software hoarding à la
Stallman. Significantly, it also has no discussion of issues of licensing. Being a hacker,
however, Raymond did give his paper a ”revision-history,” which proudly displays
revision 1.29, 9 February 1998: ”Changed free software to open source.”104

Raymond was determined to reject the philosophy of liberty that Stallman and the 328

Free Software Foundation represented, but not in order to create a political movement
of his own. Rather, Raymond (and the others at the Freeware Summit) sought to cash
in on the rising tide of the Internet economy by turning the creation of Free Software
into something that made more sense to investors, venture capitalists, and the
stock-buying public. To Raymond, Stallman and the Free Software Foundation
represented not freedom or liberty, but a kind of dogmatic, impossible communism.
As Raymond was a committed libertarian, one might expect his core beliefs in the
necessity of strong property rights to conflict with the strange communalism of Free
Softwareand, indeed, his rhetoric was focused on pragmatic, business-minded,
profit-driven, and market-oriented uses of Free Software. For Raymond, the
essentially interesting component of Free Software was not its enhancement of
human liberty, but the innovation in software production that it represented (the
”development model”). It was clear that Free Software achieved something amazing
through a clever inversion of strong property rights, an inversion which could be
expected to bring massive revenue in some other form, either through cost-cutting or,
Netscape-style, through the stock market.
Raymond wanted the business world and the mainstream industry to recognize Free 329

Softwares potential, but he felt that Stallmans [pg110] rhetoric was getting in the way.
Stallmans insistence, for example, on calling corporate intellectual-property
protection of software ”hoarding” was doing more damage than good in terms of Free
Softwares acceptance among businesses, as a practice, if not exactly a product.
Raymonds papers channeled the frustration of an entire generation of Free Software 330

104From Raymond, The Cathedral and the Bazaar. The changelog is available online only:
⌜ http://www.catb.org/ esr/writings/cathedral-bazaar/cathedral-bazaar/ ⌟ .

Two Bits Christopher M. Kelty 89

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

hackers who may or may not have shared Stallmans dogmatic philosophical stance,
but who nonetheless wanted to participate in the creation of Free Software.
Raymonds paper, the Netscape announcement, and the Freeware Summit all played
into a palpable anxiety: that in the midst of the single largest creation of paper wealth
in U.S. history, those being enriched through Free Software and the Internet were not
those who built it, who maintained it, or who got it.
The Internet giveaway was a conflict of propriety: hackers and geeks who had built 331

the software that made it work, under the sign of making it free for all, were seeing
that software generate untold wealth for people who had not built it (and furthermore,
who had no intention of keeping it free for all). Underlying the creation of wealth was
a commitment to a kind of permanent technical freedoma moral ordernot shared by
those who were reaping the most profit. This anxiety regarding the expropriation of
work (even if it had been a labor of love) was ramified by Netscapes
announcement.
All through 1998 and 1999, buzz around Open Source built. Little-known companies 332

such as Red Hat, VA Linux, Cygnus, Slackware, and SuSe, which had been providing
Free Software support and services to customers, suddenly entered media and
business consciousness. Articles in the mainstream press circulated throughout the
spring and summer of 1998, often attempting to make sense of the name change and
whether it meant a corresponding change in practice. A front-cover article in Forbes,
which featured photos of Stallman, Larry Wall, Brian Behlendorf, and Torvalds (figure
2), was noncommittal, cycling between Free Software, Open Source, and
Freeware.105

2bits_03_02-100.png,w620h657 [* ”Peace, Love and Software,” cover of Forbes, 10 333

August 1998. Used with permission of Forbes and Nathaniel Welch.]
By early 1999, OReilly Press published Open Sources: Voices from the Open Source 334

Revolution, a hastily written but widely read book. It included a number of articlesthis
time including one by Stallmanthat cobbled together the first widely available public
history of Free Software, both the practice and the technologies [pg111] involved. Kirk
McKusicks article detailed the history of important technologies like the BSD version
of UNIX, while an article by Brian Behlendorf, of Apache, detailed the practical
challenges of running Free Software projects. Raymond provided a history of hackers
and a self-aggrandizing article about his own importance in creating the movement,
while Stallmans contribution told his own version of the rise of Free Software.
By December 1999, the buzz had reached a fever pitch. When VA Linux, a legitimate 335

company which actually made something realcomputers with Linux installed on
themwent public, its shares value gained 700 percent in one day and was the single
[pg112] most valuable initial public offering of the era. VA Linux took the unconventional
step of allowing contributors to the Linux kernel to buy into the stock before the IPO,
thus bringing at least a partial set of these contributors into the mainstream Ponzi
scheme of the Internet dotcom economy. Those who managed to sell their stock
ended up benefiting from the boom, whether or not their contributions to Free

105Josh McHugh, ”For the Love of Hacking,” Forbes, 10 August 1998, 94-100.

Two Bits Christopher M. Kelty 90

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Software truly merited it. In a roundabout way, Raymond, OReilly, Perens, and others
behind the name change had achieved recognition for the central role of Free
Software in the success of the Internetand now its true name could be known: Open
Source.
Yet nothing much changed in terms of the way things actually got done. Sharing 336

source code, conceiving openness, writing licenses, coordinating projectsall these
continued as before with no significant differences between those flashing the heroic
mantle of freedom and those donning the pragmatic tunic of methodology. Now,
however, stories proliferated; definitions, distinctions, details, and detractions filled
the ether of the Internet, ranging from the philosophical commitments of Free
Software to the parables of science as the ”original open source” software. Free
Software proponents refined their message concerning rights, while Open Source
advocates refined their claims of political agnosticism or nonideological commitments
to ”fun.” All these stories served to create movements, to evangelize and advocate
and, as Eugen Leitl would say, to ”corrupt young minds” and convert them to the
cause. The fact that there are different narratives for identical practices is an
advantageous fact: regardless of why people think they are doing what they are
doing, they are all nonetheless contributing to the same mysterious thing.

A Movement? 337

To most onlookers, Free Software and Open Source seem to be overwhelmed with 338

frenzied argument; the flame wars and disputes, online and off, seem to dominate
everything. To attend a conference where geeksespecially high-profile geeks like
Raymond, Stallman, and Torvaldsare present, one might suspect that the very
detailed practices of Free Software are overseen by the brow-beating, histrionic antics
of a few charismatic leaders and that ideological commitments result in divergent,
incompatible, and affect-laden [pg113] opposition which must of necessity take specific
and incompatible forms. Strangely, this is far from the case: all this sound and fury
doesnt much change what people do, even if it is a requirement of apprenticeship. It
truly is all over but for the shouting.
According to most of the scholarly literature, the function of a movement is to narrate 339

the shared goals and to recruit new members. But is this what happens in Free
Software or Open Source?106 To begin with, movement is an awkward word; not all

106On social movementsthe closest analog, developed long agosee Gerlach and Hine, People, Power,
Change, and Freeman and Johnson, Waves of Protest. However, the Free Software and Open Source
Movements do not have ”causes” of the kind that conventional movements do, other than the
perpetuation of Free and Open Source Software (see Coleman, ”Political Agnosticism”; Chan, ”Coding
Free Software”). Similarly, there is no single development methodology that would cover only Open
Source. Advocates of Open Source are all too willing to exclude those individuals or organizations who
follow the same ”development methodology” but do not use a Free Software licensesuch as Microsofts
oft-mocked ”shared-source” program. The list of licenses approved by both the Free Software
Foundation and the Open Source Initiative is substantially the same. Further, the Debian Free Software
Guidelines and the ”Open Source Definition” are almost identical (compare
⌜ http://www.gnu.org/philosophy/license-list.html ⌟ with ⌜ http://www.opensource.org/licenses/ ⌟ [both accessed
30 June 2006]).

Two Bits Christopher M. Kelty 91

http://www.gnu.org/philosophy/license-list.html
http://www.opensource.org/licenses/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

participants would define their participation this way. Richard Stallman suggests that
Free Software is social movement, while Open Source is a development methodology.
Similarly some Open Source proponents see it as a pragmatic methodology and Free
Software as a dogmatic philosophy. While there are specific entities like the Free
Software Foundation and the Open Source Initiative, they do not comprise all Free
Software or Open Source. Free Software and Open Source are neither corporations
nor organizations nor consortia (for there are no organizations to consort); they are
neither national, subnational, nor international; they are not ”collectives” because no
membership is required or assumedindeed to hear someone assert ”I belong” to Free
Software or Open Source would sound absurd to anyone who does. Neither are they
shady bands of hackers, crackers, or thieves meeting in the dead of night, which is to
say that they are not an ”informal” organization, because there is no formal
equivalent to mimic or annul. Nor are they quite a crowd, for a crowd can attract
participants who have no idea what the goal of the crowd is; also, crowds are
temporary, while movements extend over time. It may be that movement is the best
term of the lot, but unlike social movements, whose organization and momentum are
fueled by shared causes or broken by ideological dispute, Free Software and Open
Source share practices first, and ideologies second. It is this fact that is the strongest
confirmation that they are a recursive public, a form of public that is as concerned
with the material practical means of becoming public as it is with any given public
debate.
The movement, as a practice of argument and discussion, is thus centered around 340

core agreements about the other four kinds of practices. The discussion and
argument have a specific function: to tie together divergent practices according to a
wide consensus which tries to capture the why of Free Software. Why is it different
from normal software development? Why is it necessary? Why now? [pg114] Why do
people do it? Why do people use it? Can it be preserved and enhanced? None of
these questions address the how: how should source code circulate? How should a
license be written? Who should be in charge? All of these ”hows” change slowly and
experimentally through the careful modulation of the practices, but the ”whys” are
turbulent and often distracting. Nonetheless, people engaged in Free Softwareusers,
developers, supporters, and observerscould hardly remain silent on this point, despite
the frequent demand to just ”shut up and show me the code.” ”Figuring out” Free
Software also requires a practice of reflecting on what is central to it and what is
outside of it.
The movement, as a practice of discussion and argument, is made up of stories. It is 341

a practice of storytelling: affect- and intellect-laden lore that orients existing
participants toward a particular problem, contests other histories, parries attacks
from outside, and draws in new recruits.107 This includes proselytism and evangelism
(and the usable pasts of protestant reformations, singularities, rebellion and
iconoclasm are often salient here), whether for the reform of intellectual-property law
or for the adoption of Linux in the trenches of corporate America. It includes both
107It is, in the terms of Actor Network Theory, a process of ”enrollment” in which participants find ways
to rhetorically alignand to disaligntheir interests. It does not constitute the substance of their interest,
however. See Latour, Science in Action; Callon, ”Some Elements of a Sociology of Translation.”

Two Bits Christopher M. Kelty 92

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

heartfelt allegiance in the name of social justice as well as political agnosticism
stripped of all ideology.108 Every time Free Software is introduced to someone,
discussed in the media, analyzed in a scholarly work, or installed in a workplace, a
story of either Free Software or Open Source is used to explain its purpose, its
momentum, and its temporality. At the extremes are the prophets and proselytes
themselves: Eric Raymond describes Open Source as an evolutionarily necessary
outcome of the natural tendency of human societies toward economies of abundance,
while Richard Stallman describes it as a defense of the fundamental freedoms of
creativity and speech, using a variety of philosophical theories of liberty, justice, and
the defense of freedom.109 Even scholarly analyses must begin with a potted history
drawn from the self-narration of geeks who make or advocate free software.110
Indeed, as a methodological aside, one reason it is so easy to track such stories and
narratives is because geeks like to tell and, more important, like to archive such
storiesto create Web pages, definitions, encyclopedia entries, dictionaries, and
mini-histories and to save every scrap of correspondence, every fight, and every
resolution related to their activities. This ”archival hubris” yields a very peculiar and
specific kind of fieldsite: one in which a kind [pg115] of ”as-it-happens” ethnographic
observation is possible not only through ”being there” in the moment but also by
being there in the massive, proliferating archives of moments past. Understanding
the movement as a changing entity requires constantly glancing back at its future
promises and the conditions of their making.
Stories of the movement are also stories of a recursive public. The fact that 342

movement isnt quite the right word is evidence of a kind of grasping, a figuring out of
why these practices make sense to all these geeks, in this place and time; it is a
practice that is not so different from my own ethnographic engagement with it. Note
that both Free Software and Open Source tell stories of movement(s): they are not
divided by a commercial-noncommercial line, even if they are divided by ill-defined
and hazy notions of their ultimate goals. The problem of a recursive public (or, in an
alternate language, a recursive market) as a social imaginary of moral and technical
order is common to both of them as part of their practices. Thus, stories about ”the
movement” are detailed stories about the technical and moral order that geeks
inhabit, and they are bound up with the functions and fates of the Internet. Often
these stories are themselves practices of inclusion and exclusion (e.g., ”this license is
not a Free Software license” or ”that software is not an open system”); sometimes the
stories are normative definitions about how Free Software should look. But they are,
always, stories that reveal the shared moral and technical imaginations that make up
Free Software as a recursive public.

Conclusion 343

Before 1998, there was no movement. There was the Free Software Foundation, with 344

108Coleman, ”Political Agnosticism.”
109See, respectively, Raymond, The Cathedral and the Bazaar, and Williams, Free as in Freedom.
110For example, Castells, The Internet Galaxy, and Weber, The Success of Open Source both tell versions
of the same story of origins and development.

Two Bits Christopher M. Kelty 93

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

its peculiar goals, and a very wide array of other projects, people, software, and ideas.
Then, all of a sudden, in the heat of the dotcom boom, Free Software was a
movement. Suddenly, it was a problem, a danger, a job, a calling, a dogma, a
solution, a philosophy, a liberation, a methodology, a business plan, a success, and
an alternative. Suddenly, it was Open Source or Free Software, and it became
necessary to choose sides. After 1998, debates about definition exploded;
denunciations and manifestos and journalistic hagiography proliferated. Ironically,
the creation of two names allowed people to identify one thing, for [pg116] these two
names referred to identical practices, licenses, tools, and organizations. Free
Software and Open Source shared everything ”material,” but differed vocally and at
great length with respect to ideology. Stallman was denounced as a kook, a
communist, an idealist, and a dogmatic holding back the successful adoption of Open
Source by business; Raymond and users of ”open source” were charged with selling
out the ideals of freedom and autonomy, with the dilution of the principles and the
promise of Free Software, as well as with being stooges of capitalist domination.
Meanwhile, both groups proceeded to create objectsprincipally softwareusing tools
that they agreed on, concepts of openness that they agreed on, licenses that they
agreed on, and organizational schemes that they agreed on. Yet never was there
fiercer debate about the definition of Free Software.
On the one hand, the Free Software Foundation privileges the liberty and creativity of 345

individual geeks, geeks engaged in practices of self-fashioning through the creation of
software. It gives precedence to the liberal claim that without freedom of expression,
individuals are robbed of their ability to self-determine. On the other hand, Open
Source privileges organizations and processes, that is, geeks who are engaged in
building businesses, nonprofit organizations, or governmental and public
organizations of some form or another. It gives precedence to the pragmatist (or
polymathic) view that getting things done requires flexible principles and negotiation,
and that the public practice of building and running things should be separate from
the private practice of ethical and political beliefs. Both narratives give geeks ways of
making sense of a practice that they share in almost all of its details; both narratives
give geeks a way to understand how Free Software or Open Source Software is
different from the mainstream, proprietary software development that dominates
their horizons. The narratives turn the haphazard participation and sharing that
existed before 1998 into meaningful, goal-directed practices in the present, turning a
class-in-itself into a class-for-itself, to use a terminology for the most part unwelcome
among geeks.
If two radically opposed ideologies can support people engaged in identical practices, 346

then it seems obvious that the real space of politics and contestation is at the level of
these practices and their emergence. These practices emerge as a response to a
reorientation of power and knowledge, a reorientation somewhat impervious to [pg117]

conventional narratives of freedom and liberty, or to pragmatic claims of
methodological necessity or market-driven innovation. Were these conventional
narratives sufficient, the practices would be merely bureaucratic affairs, rather than
the radical transformations they are.

Two Bits Christopher M. Kelty 94

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

4.Sharing Source Code 347

Free Software would be nothing without shared source code. The idea is built into the 348

very name ”Open Source,” and it is a requirement of all Free Software licenses that
source code be open to view, not ”welded shut.” Perhaps ironically, source code is the
most material of the five components of Free Software; it is both an expressive
medium, like writing or speech, and a tool that performs concrete actions. It is a
mnemonic that translates between the illegible electron-speed doings of our
machines and our lingering ability to partially understand and control them as human
agents. Many Free Software programmers and advocates suggest that ”information
wants to be free” and that sharing is a natural condition of human life, but I argue
something contrary: sharing produces its own kind of moral and technical order, that
is, ”information makes people want freedom” and how they want it is related to how
that information is created and circulated. In this chapter I explore the [pg119] twisted
and contingent history of how source code and its sharing have come to take the
technical, legal, and pedagogical forms they have today, and how the norms of
sharing have come to seem so natural to geeks.
Source code is essential to Free Software because of the historically specific ways in 349

which it has come to be shared, ”ported,” and ”forked.” Nothing about the nature of
source code requires that it be shared, either by corporations for whom secrecy and
jealous protection are the norm or by academics and geeks for whom source code is
usually only one expression, or implementation, of a greater idea worth sharing.
However, in the last thirty years, norms of sharing source codetechnical, legal, and
pedagogical normshave developed into a seemingly natural practice. They emerged
through attempts to make software into a product, such as IBMs 1968 ”unbundling”
of software and hardware, through attempts to define and control it legally through
trade secret, copyright, and patent law, and through attempts to teach engineers how
to understand and to create more software.
The story of the norms of sharing source code is, not by accident, also the history of 350

the UNIX operating system.111 The UNIX operating system is a monstrous
academic-corporate hybrid, an experiment in portability and sharing whose impact is
widely and reverently acknowledged by geeks, but underappreciated more generally.
The story of UNIX demonstrates the details of how source code has come to be
shared, technically, legally, and pedagogically. In technical terms UNIX and the
programming language C in which it was written demonstrated several key ideas in
operating-systems theory and practice, and they led to the widespread ”porting” of
UNIX to virtually every kind of hardware available in the 1970s, all around the world.
In legal terms UNIXs owner, AT&T, licensed it widely and liberally, in both binary and
source-code form; the legal definition of UNIX as a product, however, was not the
111”Sharing” source code is not the only kind of sharing among geeks (e.g., informal sharing to
communicate ideas), and UNIX is not the only [pg324] shared software. Other examples that exhibit this
kind of proliferation (e.g., the LISP programming language, the TeX text-formatting system) are as
ubiquitous as UNIX today. The inverse of my argument here is that selling produces a different kind of
order: many products that existed in much larger numbers than UNIX have since disappeared because
they were never ported or forked; they are now part of dead-computer museums and collections, if they
have survived at all.

Two Bits Christopher M. Kelty 95

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

same as the technical definition of UNIX as an evolving experiment in portable
operating systemsa tension that has continued throughout its lifetime. In pedagogical
terms UNIX became the very paradigm of an ”operating system” and was thereby
ported not only in the technical sense from one machine to another, but from
machines to minds, as computer-science students learning the meaning of ”operating
system” studied the details of the quasi-legally shared UNIX source code.112

The proliferation of UNIX was also a hybrid commercial-academic undertaking: it was 351

neither a ”public domain” object shared solely among academics, nor was it a
conventional commercial product. Proliferation occurred through novel forms of
academic sharing as well as through licensing schemes constrained by the peculiar
status of AT&T, a regulated monopoly forbidden to enter the computer and software
industry before 1984. Thus proliferation was not mere replication: it was not the sale
of copies of UNIX, but a complex web of shared and re-shared chunks of source code,
and the reimplementation of an elegant and simple conceptual scheme. As UNIX
proliferated, it was stabilized in multiple ways: by academics seeking to keep it whole
and self-compatible through contributions of source code; by lawyers at AT&T seeking
to define boundaries that mapped onto laws, licenses, versions, and regulations; and
by professors seeking to define it as an exemplar of the core concepts of
operating-system theory. In all these ways, UNIX was a kind of primal recursive public,
drawing together people for whom the meaning of their affiliation was the use,
modification, and stabilization of UNIX.
The obverse of proliferation is differentiation: forking. UNIX is admired for its integrity 352

as a conceptual thing and despised (or marveled at) for its truly tangled genealogical
tree of ports and forks: new versions of UNIX, some based directly on the source code,
some not, some licensed directly from AT&T, some sublicensed or completely
independent.
Forking, like random mutation, has had both good and bad effects; on the one hand, 353

it ultimately created versions of UNIX that were not compatible with themselves (a
kind of autoimmune response), but it also allowed the merger of UNIX and the
Arpanet, creating a situation wherein UNIX operating systems came to be not only the
paradigm of operating systems but also the paradigm of networked computers,
through its intersection with the development of the TCP/IP protocols that are at the
core of the Internet.113 By the mid-1980s, UNIX was a kind of obligatory passage
point for anyone interested in networking, operating systems, the Internet, and

112The story of UNIX has not been told, and yet it has been told hundreds of thousands of times. Every
hacker, programmer, computer scientist, and geek tells a version of UNIX historya usable past. Thus,
the sources for this chapter include these stories, heard and recorded throughout my fieldwork, but also
easily accessible in academic work on Free Software, which enthusiastically participates in this
potted-history retailing. See, for example, Steven Weber, The Success of Open Source; Castells, The
Internet Galaxy; Himanen, The Hacker Ethic; Benkler, The Wealth of Networks. To date there is but one
detailed history of UNIXA Quarter Century of UNIX, by Peter Saluswhich I rely on extensively. Matt Rattos
dissertation, ”The Pressure of Openness,” also contains an excellent analytic history of the events told in
this chapter.
113The intersection of UNIX and TCP/IP occurred around 1980 and led to the famous switch from the
Network Control Protocol (NCP) to the Transmission Control Protocol/Internet Protocol that occurred on 1
January 1983 (see Salus, Casting the Net).

Two Bits Christopher M. Kelty 96

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

especially, modes of creating, sharing, and modifying source codeso much so that
UNIX has become known among geeks not just as an operating system but as a
philosophy, an answer to a very old question in new garb: how shall we live, among a
new world of machines, software, and networks?

Before Source 354

In the early days of computing machinery, there was no such thing as source code. 355

Alan Turing purportedly liked to talk to the machine in binary. Grace Hopper, who
invented an early compiler, worked as close to the Harvard Mark I as she could get:
flipping switches and plugging and unplugging relays that made up the ”code” of
what the machine would do. Such mechanical and meticulous work hardly merits the
terms reading and writing; there were no GOTO statements, no line numbers, only
calculations that had to be translated from the pseudo-mathematical writing of
engineers and human computers to a physical or mechanical configuration.114
Writing and reading source code and programming languages was a long, slow
development that became relatively widespread only by the mid-1970s. So-called
higher-level languages began to appear in the late 1950s: FORTRAN, COBOL, Algol,
and the ”compilers” which allowed for programs written in them to be transformed
into the illegible mechanical and valvular representations of the machine. It was in
this era that the terms source language and target language emerged to designate
the activity of translating higher to lower level languages.115

There is a certain irony about the computer, not often noted: the unrivaled power of 356

the computer, if the ubiquitous claims are believed, rests on its general
programmability; it can be made to do any calculation, in principle. The so-called
universal Turing machine provides the mathematical proof.116 Despite the abstract
power of such certainty, however, we do not live in the world of The Computerwe live
in a world of computers. The hardware systems that manufacturers created from the
1950s onward were so specific and idiosyncratic that it was inconceivable that one
might write a program for one machine and then simply run it on another.

114Light, ”When Computers Were Women”; Grier, When Computers Were Human.
115There is a large and growing scholarly history of software: Wexelblat, History of Programming
Languages and Bergin and Gibson, History of Programming Languages 2 are collected papers by
historians and participants. Key works in history include Campbell-Kelly, From Airline Reservations to
Sonic the Hedgehog; Akera and Nebeker, From 0 to 1; Hashagen, Keil-Slawik, and Norberg, History of
ComputingSoftware Issues; Donald A. MacKenzie, Mechanizing Proof. Michael Mahoney has written by
far the most about the early history of software; his relevant works include ”The Roots of Software
Engineering,” ”The Structures of Computation,” ”In Our Own Image,” and ”Finding a History for Software
Engineering.” On UNIX in particular, there is shockingly little historical work. Martin Campbell-Kelly and
William Aspray devote a mere two pages in their general history Computer. As early as 1978, Ken
Thompson and Dennis Ritchie were reflecting on the ”history” of UNIX in ”The UNIX Time-Sharing
System: A Retrospective.” Ritchie maintains a Web site that contains a valuable collection of early
documents and his own reminiscences (⌜ http://www.cs.bell-labs.com/who/dmr/ ⌟ [pg325]). Mahoney has also
conducted interviews with the main participants in the development of UNIX at Bell Labs. These
interviews have not been published anywhere, but are drawn on as background in this chapter
(interviews are in Mahoneys personal files).
116Turing, ”On Computable Numbers.” See also Davis, Engines of Logic, for a basic explanation.

Two Bits Christopher M. Kelty 97

http://www.cs.bell-labs.com/who/dmr/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

”Programming” became a bespoke practice, tailored to each new machine, and while
programmers of a particular machine may well have shared programs with each
other, they would not have seen much point in sharing with users of a different
machine. Likewise, computer scientists shared mathematical descriptions of
algorithms and ideas for automation with as much enthusiasm as corporations
jealously guarded theirs, but this sharing, or secrecy, did not extend to the sharing of
the program itself. The need to ”rewrite” a program for each machine was not just a
historical accident, but [pg122] was determined by the needs of designers and
engineers and the vicissitudes of the market for such expensive machines.117

In the good old days of computers-the-size-of-rooms, the languages that humans 357

used to program computers were mnemonics; they did not exist in the computer, but
on a piece of paper or a specially designed code sheet. The code sheet gave humans
who were not Alan Turing a way to keep track of, to share with other humans, and to
think systematically about the invisible light-speed calculations of a complicated
device. Such mnemonics needed to be ”coded” on punch cards or tape; if engineers
conferred, they conferred over sheets of paper that matched up with wires, relays,
and switchesor, later, printouts of the various machine-specific codes that
represented program and data.
With the introduction of programming languages, the distinction between a ”source” 358

language and a ”target” language entered the practice: source languages were
”translated” into the illegible target language of the machine. Such higher-level
source languages were still mnemonics of sortsthey were certainly easier for humans
to read and write, mostly on yellowing tablets of paper or special code sheetsbut they
were also structured enough that a source language could be input into a computer
and translated into a target language which the designers of the hardware had
specified. Inputting commands and cards and source code required a series of actions
specific to each machine: a particular card reader or, later, a keypunch with a
particular ”editor” for entering the commands. Properly input and translated source
code provided the machine with an assembled binary program that would, in fact, run
(calculate, operate, control). It was a separation, an abstraction that allowed for a
certain division of labor between the ingenious human authors and the fast and
mechanical translating machines.
Even after the invention of programming languages, programming ”on” a 359

computersitting at a glowing screen and hacking through the nightwas still a long
time in coming. For example, only by about 1969 was it possible to sit at a keyboard,
write source code, instruct the computer to compile it, then run the programall
without leaving the keyboardan activity that was all but unimaginable in the early
days of ”batch processing.”118 Very few programmers worked in such a fashion
before the mid-1970s, when text editors that allowed programmers to see the text on
117Sharing programs makes sense in this period only in terms of user groups such as SHARE (IBM) and
USE (DEC). These groups were indeed sharing source code and sharing programs they had written (see
Akera, ”Volunteerism and the Fruits of Collaboration”), but they were constituted around specific
machines and manufacturers; brand loyalty and customization were familiar pursuits, but sharing source
code across dissimilar computers was not.
118See Waldrop, The Dream Machine, 142-47.

Two Bits Christopher M. Kelty 98

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

a screen rather [pg123] than on a piece of paper started to proliferate.119 We are, by
now, so familiar with the image of the man or woman sitting at a screen interacting
with this device that it is nearly impossible to imagine how such a seemingly obvious
practice was achieved in the first placethrough the slow accumulation of the tools and
techniques for working on a new kind of writingand how that practice exploded into a
Babel of languages and machines that betrayed the promise of the general-purpose
computing machine.
The proliferation of different machines with different architectures drove a desire, 360

among academics especially, for the standardization of programming languages, not
so much because any single language was better than another, but because it
seemed necessary to most engineers and computer users to share an emerging
corpus of algorithms, solutions, and techniques of all kinds, necessary to avoid
reinventing the wheel with each new machine. Algol, a streamlined language suited
to algorithmic and algebraic representations, emerged in the early 1960s as a
candidate for international standardization. Other languages competed on different
strengths: FORTRAN and COBOL for general business use; LISP for symbolic
processing. At the same time, the desire for a standard ”higher-level” language
necessitated a bestiary of translating programs: compilers, parsers, lexical analyzers,
and other tools designed to transform the higher-level (human-readable) language
into a machine-specific lower-level language, that is, machine language, assembly
language, and ultimately the mystical zeroes and ones that course through our
machines. The idea of a standard language and the necessity of devising specific
tools for translation are the origin of the problem of portability: the ability to move
softwarenot just good ideas, but actual programs, written in a standard languagefrom
one machine to another.
A standard source language was seen as a way to counteract the proliferation of 361

different machines with subtly different architectures. Portable source code would
allow programmers to imagine their programs as ships, stopping in at ports of call,
docking on different platforms, but remaining essentially mobile and unchanged by
these port-calls. Portable source code became the Esperanto of humans who had
wrought their own Babel of tribal hardware machines.
Meanwhile, for the computer industry in the 1960s, portable source code was largely 362

a moot point. Software and hardware were [pg124] two sides of single, extremely
expensive coinno one, except engineers, cared what language the code was in, so
long as it performed the task at hand for the customer. Each new machine needed to
be different, faster, and, at first, bigger, and then smaller, than the last. The urge to
differentiate machines from each other was not driven by academic experiment or
aesthetic purity, but by a demand for marketability, competitive advantage, and the

119A large number of editors were created in the 1970s; Richard Stallmans EMACS and Bill Joys vi remain
the most well known. Douglas Engelbart is somewhat too handsomely credited with the creation of the
interactive computer, but the work of Butler Lampson and Peter Deutsch in Berkeley, as well as that of
the Multics team, Ken Thompson, and others on early on-screen editors is surely more substantial in
terms of the fundamental ideas and problems of manipulating text files on a screen. This story is largely
undocumented, save for in the computer-science literature itself. On Engelbart, see Bardini,
Bootstrapping.

Two Bits Christopher M. Kelty 99

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

transformation of machines and software into products. Each machine had to do
something really well, and it needed to be developed in secret, in order to beat out
the designs and innovations of competitors. In the 1950s and 1960s the software was
a core component of this marketable object; it was not something that in itself was
differentiated or separately distributeduntil IBMs famous decision in 1968 to
”unbundle” software and hardware.
Before the 1970s, employees of a computer corporation wrote software in-house. The 363

machine was the product, and the software was just an extra line-item on the invoice.
IBM was not the first to conceive of software as an independent product with its own
market, however. Two companies, Informatics and Applied Data Research, had
explored the possibilities of a separate market in software.120 Informatics, in
particular, developed the first commercially successful software product, a
business-management system called Mark IV, which in 1967 cost $30,000.
Informatics president Walter Bauer ”later recalled that potential buyers were
astounded by the price of Mark IV. In a world accustomed to free software the price of
$30,000 was indeed high.”121

IBMs unbundling decision marked a watershed, the point at which ”portable” source 364

code became a conceivable idea, if not a practical reality, to many in the industry.122
Rather than providing a complete package of hardware and software, IBM decided to
differentiate its products: to sell software and hardware separately to consumers.123
But portability was not simply a technical issue; it was a political-economic one as
well. IBMs decision was driven both by its desire to create IBM software that ran on all
IBM machines (a central goal of the famous OS/360 project overseen and diagnosed
by Frederick Brooks) and as response to an antitrust suit filed by the U.S. Department
of Justice.124 The antitrust suit included as part of its claims the suggestion that the
close tying of software and hardware represented a form of monopolistic behavior,
and it prompted IBM to consider strategies to ”unbundle” its product.
Portability in the business world meant something specific, however. Even if software 365

could be made portable at a technical leveltransferable between two different IBM
machinesthis was certainly no guarantee that it would be portable between
customers. One companys accounting program, for example, may not suit anothers
practices. Portability was therefore hindered both by the diversity of machine
architectures and by the diversity of business practices and organization. IBM and
other manufacturers therefore saw no benefit to standardizing source code, as it
could only provide an advantage to competitors.125

120See Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog.
121Ibid., 107.
122Campbell-Kelly and Aspray, Computer, 203-5.
123Ultimately, the Department of Justice case against IBM used bundling as evidence of monopolistic
behavior, in addition to claims about the creation of so-called Plug Compatible Machines, devices that
were reverse-engineered by meticulously constructing both the mechanical interface and the software
that would communicate with IBM mainframes. See Franklin M. Fischer, Folded, Spindled, and Mutilated;
Brock, The Second Information Revolution.
124The story of this project and the lessons Brooks learned are the subject of one of the most famous
software-development handbooks, The Mythical Man-Month, by Frederick Brooks.
125The computer industry has always relied heavily on trade secret, much less so on patent and

Two Bits Christopher M. Kelty 100

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Portability was thus not simply a technical problemthe problem of running one 366

program on multiple architecturesbut also a kind of political-economic problem. The
meaning of product was not always the same as the meaning of hardware or software,
but was usually some combination of the two. At that early stage, the outlines of a
contest over the meaning of portable or shareable source code are visible, both in the
technical challenges of creating high-level languages and in the political-economic
challenges that corporations faced in creating distinctive proprietary products.

The UNIX Time-Sharing System 367

Set against this backdrop, the invention, success, and proliferation of the UNIX 368

operating system seems quite monstrous, an aberration of both academic and
commercial practice that should have failed in both realms, instead of becoming the
most widely used portable operating system in history and the very paradigm of an
”operating system” in general. The story of UNIX demonstrates how portability
became a reality and how the particular practice of sharing UNIX source code became
a kind of de facto standard in its wake.
UNIX was first written in 1969 by Ken Thompson and Dennis Ritchie at Bell Telephone 369

Labs in Murray Hill, New Jersey. UNIX was the dénouement of the MIT project Multics,
which Bell Labs had funded in part and to which Ken Thompson had been assigned.
Multics was one of the earliest complete time-sharing operating systems, a
demonstration platform for a number of early innovations in time-sharing (multiple
simultaneous users on one computer).126 By 1968, Bell Labs had pulled its
supportincluding Ken Thompsonfrom the project and placed him back in Murray Hill,
where he and [pg126] Dennis Ritchie were stuck without a machine, without any money,
and without a project. They were specialists in operating systems, languages, and
machine architecture in a research group that had no funding or mandate to pursue
these areas. Through the creative use of some discarded equipment, and in relative
isolation from the rest of the lab, Thompson and Ritchie created, in the space of about
two years, a complete operating system, a programming language called C, and a
host of tools that are still in extremely wide use today. The name UNIX (briefly, UNICS)
was, among other things, a puerile pun: a castrated Multics.
The absence of an economic or corporate mandate for Thompsons and Ritchies 370

creativity and labor was not unusual for Bell Labs; researchers were free to work on
just about anything, so long as it possessed some kind of vague relation to the
interests of AT&T. However, the lack of funding for a more powerful machine did
restrict the kind of work Thompson and Ritchie could accomplish. In particular, it
influenced the design of the system, which was oriented toward a super-slim control
unit (a kernel) that governed the basic operation of the machine and an expandable
suite of small, independent tools, each of which did one thing well and which could be
copyright. Trade secret also produces its own form of order, access, and circulation, which was carried
over into the early software industry as well. See Kidder, The Soul of a New Machine for a classic
account of secrecy and competition in the computer industry.
126On time sharing, see Lee et al., ”Project MAC.” Multics makes an appearance in nearly all histories of
computing, the best resource by far being Tom van Vlecks Web site ⌜ http://www.multicians.org/ ⌟ .

Two Bits Christopher M. Kelty 101

http://www.multicians.org/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

strung together to accomplish more complex and powerful tasks.127 With the help of
Joseph Ossana, Douglas McIlroy, and others, Thompson and Ritchie eventually
managed to agitate for a new PDP-11/20 based not on the technical merits of the
UNIX operating system itself, but on its potential applications, in particular, those of
the text-preparation group, who were interested in developing tools for formatting,
typesetting, and printing, primarily for the purpose of creating patent applications,
which was, for Bell Labs, and for AT&T more generally, obviously a laudable
goal.128

UNIX was unique for many technical reasons, but also for a specific economic reason: 371

it was never quite academic and never quite commercial. Martin Campbell-Kelly notes
that UNIX was a ”non-proprietary operating system of major significance.”129 Kellys
use of ”non-proprietary” is not surprising, but it is incorrect. Although business-speak
regularly opposed open to proprietary throughout the 1980s and early 1990s (and
UNIX was definitely the former), Kellys slip marks clearly the confusion between
software ownership and software distribution that permeates both popular and
academic understandings. UNIX was indeed proprietaryit was copyrighted and wholly
owned by Bell Labs and in turn by Western Electric [pg127] and AT&Tbut it was not
exactly commercialized or marketed by them. Instead, AT&T allowed individuals and
corporations to install UNIX and to create UNIX-like derivatives for very low licensing
fees. Until about 1982, UNIX was licensed to academics very widely for a very small
sum: usually royalty-free with a minimal service charge (from about $150 to $800).130
The conditions of this license allowed researchers to do what they liked with the
software so long as they kept it secret: they could not distribute or use it outside of
their university labs (or use it to create any commercial product or process), nor
publish any part of it. As a result, throughout the 1970s UNIX was developed both by
Thompson and Ritchie inside Bell Labs and by users around the world in a relatively
informal manner. Bell Labs followed such a liberal policy both because it was one of a
small handful of industry-academic research and development centers and because
AT&T was a government monopoly that provided phone service to the country and
was therefore forbidden to directly enter the computer software market.131

127Some widely admired technical innovations (many of which were borrowed from Multics) include: the
hierarchical file system, the command shell for interacting with the system; the decision to treat
everything, including external devices, as the same kind of entity (a file), the ”pipe” operator which
allowed the output of one tool to be ”piped” as input to another tool, facilitating the easy creation of
complex tasks from simple tools.
128Salus, A Quarter Century of UNIX, 33-37.
129Campbell-Kelly, From Airline Reservations to Sonic the Hedgehog, 143.
130Ritchies Web site contains a copy of a 1974 license (⌜ http://cm.bell-labs.com/cm/cs/who/dmr/licenses.html ⌟
) and a series of ads that exemplify the uneasy positioning of UNIX as a commercial product
(⌜ http://cm.bell-labs.com/cm/cs/who/dmr/unixad.html ⌟). According to Don Libes and Sandy Ressler, ”The
original licenses were source licenses. . . . [C]ommercial institutions paid fees on the order of $20,000. If
you owned more than one machine, you had to buy binary licenses for every additional machine [i.e.,
you were not allowed to copy the source and install it] you wanted to install UNIX on. They were fairly
pricey at $8000, considering you couldnt resell them. On the other hand, educational institutions could
buy source licenses for several hundred dollarsjust enough to cover Bell Labs administrative overhead
and the cost of the tapes” (Life with UNIX, 20-21).
131According to Salus, this licensing practice was also a direct result of Judge Thomas Meaneys 1956
antitrust consent decree which required AT&T to reveal and to license its patents for nominal fees (A

Two Bits Christopher M. Kelty 102

http://cm.bell-labs.com/cm/cs/who/dmr/licenses.html
http://cm.bell-labs.com/cm/cs/who/dmr/unixad.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Being on the border of business and academia meant that UNIX was, on the one hand, 372

shielded from the demands of management and markets, allowing it to achieve the
conceptual integrity that made it so appealing to designers and academics. On the
other, it also meant that AT&T treated it as a potential product in the emerging
software industry, which included new legal questions from a changing
intellectual-property regime, novel forms of marketing and distribution, and new
methods of developing, supporting, and distributing software.
Despite this borderline status, UNIX was a phenomenal success. The reasons why 373

UNIX was so popular are manifold; it was widely admired aesthetically, for its size,
and for its clever design and tools. But the fact that it spread so widely and quickly is
testament also to the existing community of eager computer scientists and engineers
(and a few amateurs) onto which it was bootstrapped, users for whom a powerful,
flexible, low-cost, modifiable, and fast operating system was a revelation of sorts. It
was an obvious alternative to the complex, poorly documented, buggy operating
systems that routinely shipped standard with the machines that universities and
research organizations purchased. ”It worked,” in other words.
A key feature of the popularity of UNIX was the inclusion of the source code. When 374

Bell Labs licensed UNIX, they usually provided a tape that contained the
documentation (i.e., documentation that [pg128] was part of the system, not a paper
technical manual external to it), a binary version of the software, and the source code
for the software. The practice of distributing the source code encouraged people to
maintain it, extend it, document itand to contribute those changes to Thompson and
Ritchie as well. By doing so, users developed an interest in maintaining and
supporting the project precisely because it gave them an opportunity and the tools to
use their computer creatively and flexibly. Such a globally distributed community of
users organized primarily by their interest in maintaining an operating system is a
precursor to the recursive public, albeit confined to the world of computer scientists
and researchers with access to still relatively expensive machines. As such, UNIX was
not only a widely shared piece of quasi-commercial software (i.e., distributed in some
form other than through a price-based retail market), but also the first to
systematically include the source code as part of that distribution as well, thus
appealing more to academics and engineers.132

Throughout the 1970s, the low licensing fees, the inclusion of the source code, and its 375

conceptual integrity meant that UNIX was ported to a remarkable number of other
machines. In many ways, academics found it just as appealing, if not more, to be
involved in the creation and improvement of a cutting-edge system by licensing and
porting the software themselves, rather than by having it provided to them, without
the source code, by a company. Peter Salus, for instance, suggests that people
experienced the lack of support from Bell Labs as a kind of spur to develop and share

Quarter Century of UNIX, 56); see also Brock, The Second Information Revolution, 116-20.
132Even in computer science, source code was rarely formally shared, and more likely presented in the
form of theorems and proofs, or in various idealized higher-level languages such as Donald Knuths MIX
language for presenting algorithms (Knuth, The Art of Computer Programming). Snippets of actual
source code are much more likely to be found in printed form in handbooks, manuals, how-to guides,
and other professional publications aimed at training programmers.

Two Bits Christopher M. Kelty 103

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

their own fixes. The means by which source code was shared, and the norms and
practices of sharing, porting, forking, and modifying source code were developed in
this period as part of the development of UNIX itselfthe technical design of the
system facilitates and in some cases mirrors the norms and practices of sharing that
developed: operating systems and social systems.133

Sharing UNIX 376

Over the course of 1974-77 the spread and porting of UNIX was phenomenal for an 377

operating system that had no formal system of distribution and no official support
from the company that owned it, and that evolved in a piecemeal way through the
contributions [pg129] of people from around the world. By 1975, a users group had
developed: USENIX.134 UNIX had spread to Canada, Europe, Australia, and Japan, and
a number of new tools and applications were being both independently circulated
and, significantly, included in the frequent releases by Bell Labs itself. All during this
time, AT&Ts licensing department sought to find a balance between allowing this
circulation and innovation to continue, and attempting to maintain trade-secret status
for the software. UNIX was, by 1980, without a doubt the most widely and deeply
understood trade secret in computing history.
The manner in which the circulation of and contribution to UNIX occurred is not well 378

documented, but it includes both technical and pedagogical forms of sharing. On the
technical side, distribution took a number of forms, both in resistance to AT&Ts
attempts to control it and facilitated by its unusually liberal licensing of the software.
On the pedagogical side, UNIX quickly became a paradigmatic object for
computer-science students precisely because it was a working operating system that
included the source code and that was simple enough to explore in a semester or
two.
In A Quarter Century of UNIX Salus provides a couple of key stories (from Ken 379

Thompson and Lou Katz) about how exactly the technical sharing of UNIX worked,
how sharing, porting, and forking can be distinguished, and how it was neither strictly
legal nor deliberately illegal in this context. First, from Ken Thompson: ”The first thing
to realize is that the outside world ran on releases of UNIX (V4, V5, V6, V7) but we did
not. Our view was a continuum. V5 was what we had at some point in time and was
probably out of date simply by the activity required to put it in shape to export. After
V6, I was preparing to go to Berkeley to teach for a year. I was putting together a
system to take. Since it was almost a release, I made a diff with V6 [a tape containing
only the differences between the last release and the one Ken was taking with him].
On the way to Berkeley I stopped by Urbana-Champaign to keep an eye on Greg
133The simultaneous development of the operating system and the norms for creating, sharing,
documenting, and extending it are often referred to as the ”UNIX philosophy.” It includes the central
idea that one should build on the ideas (software) of others (see Gancarz, The Unix Philosophy and Linux
and the UNIX Philosophy). See also Raymond, The Art of UNIX Programming.
134Bell Labs threatened the nascent UNIX NEWS newsletter with trademark infringement, so ”USENIX”
was a concession that harkened back to the original USE users group for DEC machines, but avoided
explicitly using the name UNIX. Libes and Ressler, Life with UNIX, 9.

Two Bits Christopher M. Kelty 104

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Chesson. . . . I left the diff tape there and I told him that I wouldnt mind if it got
around.”135

The need for a magnetic tape to ”get around” marks the difference between the 380

1970s and the present: the distribution of software involved both the material
transport of media and the digital copying of information. The desire to distribute bug
fixes (the ”diff ” tape) resonates with the future emergence of Free Software: the
[pg130] fact that others had fixed problems and contributed them back to Thompson
and Ritchie produced an obligation to see that the fixes were shared as widely as
possible, so that they in turn might be ported to new machines. Bell Labs, on the
other hand, would have seen this through the lens of software development, requiring
a new release, contract renegotiation, and a new license fee for a new version.
Thompsons notion of a ”continuum,” rather than a series of releases also marks the
difference between the idea of an evolving common set of objects stewarded by
multiple people in far-flung locales and the idea of a shrink-wrapped ”productized”
software package that was gaining ascendance as an economic commodity at the
same time. When Thompson says ”the outside world,” he is referring not only to
people outside of Bell Labs but to the way the world was seen from within Bell Labs
by the lawyers and marketers who would create a new version. For the lawyers, the
circulation of source code was a problem because it needed to be stabilized, not so
much for commercial reasons as for legal onesone license for one piece of software.
Distributing updates, fixes, and especially new tools and additions written by people
who were not employed by Bell Labs scrambled the legal clarity even while it
strengthened the technical quality. Lou Katz makes this explicit.

A large number of bug fixes was collected, and rather than issue them one at a 381

time, a collection tape (”the 50 fixes”) was put together by Ken [the same ”diff
tape,” presumably]. Some of the fixes were quite important, though I dont
remember any in particular. I suspect that a significant fraction of the fixes were
actually done by non-Bell people. Ken tried to send it out, but the lawyers kept
stalling and stalling and stalling. Finally, in complete disgust, someone ”found a
tape on Mountain Avenue” [the location of Bell Labs] which had the fixes. When
the lawyers found out about it, they called every licensee and threatened them
with dire consequences if they didnt destroy the tape, after trying to find out how
they got the tape. I would guess that no one would actually tell them how they
came by the tape (I didnt).136

Distributing the fixes involved not just a power struggle between the engineers and 382

management, but was in fact clearly motivated by the fact that, as Katz says, ”a
significant fraction of the fixes were done by non-Bell people.” This meant two things:
first, that there was an obvious incentive to return the updated system to these [pg131]

people and to others; second, that it was not obvious that AT&T actually owned or
could claim rights over these fixesor, if they did, they needed to cover their legal
tracks, which perhaps in part explains the stalling and threatening of the lawyers,
who may have been buying time to make a ”legal” version, with the proper

135Salus, A Quarter Century of Unix, 138.
136Ibid., emphasis added.

Two Bits Christopher M. Kelty 105

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

permissions.
The struggle should be seen not as one between the rebel forces of UNIX 383

development and the evil empire of lawyers and managers, but as a struggle
between two modes of stabilizing the object known as UNIX. For the lawyers, stability
implied finding ways to make UNIX look like a product that would meet the existing
legal framework and the peculiar demands of being a regulated monopoly unable to
freely compete with other computer manufacturers; the ownership of bits and pieces,
ideas and contributions had to be strictly accountable. For the programmers, stability
came through redistributing the most up-to-date operating system and sharing all
innovations with all users so that new innovations might also be portable. The
lawyers saw urgency in making UNIX legally stable; the engineers saw urgency in
making UNIX technically stable and compatible with itself, that is, to prevent the
forking of UNIX, the death knell for portability. The tension between achieving legal
stability of the object and promoting its technical portability and stability is one that
has repeated throughout the life of UNIX and its derivativesand that has ramifications
in other areas as well.
The identity and boundaries of UNIX were thus intricately formed through its sharing 384

and distribution. Sharing produced its own form of moral and technical order.
Troubling questions emerged immediately: were the versions that had been fixed,
extended, and expanded still UNIX, and hence still under the control of AT&T? Or were
the differences great enough that something else (not-UNIX) was emerging? If a tape
full of fixes, contributed by non-Bell employees, was circulated to people who had
licensed UNIX, and those fixes changed the system, was it still UNIX? Was it still UNIX
in a legal sense or in a technical sense or both? While these questions might seem
relatively scholastic, the history of the development of UNIX suggests something far
more interesting: just about every possible modification has been made, legally and
technically, but the concept of UNIX has remained remarkably stable.

Porting UNIX 385

Technical portability accounts for only part of UNIXs success. As a pedagogical 386

resource, UNIX quickly became an indispensable tool for academics around the world.
As it was installed and improved, it was taught and learned. The fact that UNIX spread
first to university computer-science departments, and not to businesses, government,
or nongovernmental organizations, meant that it also became part of the core
pedagogical practice of a generation of programmers and computer scientists; over
the course of the 1970s and 1980s, UNIX came to exemplify the very concept of an
operating system, especially time-shared, multi-user operating systems. Two stories
describe the porting of UNIX from machines to minds and illustrate the practice as it
developed and how it intersected with the technical and legal attempts to stabilize
UNIX as an object: the story of John Lionss Commentary on Unix 6th Edition and the
story of Andrew Tanenbaums Minix.
The development of a pedagogical UNIX lent a new stability to the concept of UNIX as 387

opposed to its stability as a body of source code or as a legal entity. The porting of

Two Bits Christopher M. Kelty 106

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

UNIX was so successful that even in cases where a ported version of UNIX shares
none of the same source code as the original, it is still considered UNIX. The
monstrous and promiscuous nature of UNIX is most clear in the stories of Lions and
Tanenbaum, especially when contrasted with the commercial, legal, and technical
integrity of something like Microsoft Windows, which generally exists in only a small
number of forms (NT, ME, XP, 95, 98, etc.), possessing carefully controlled source
code, immured in legal protection, and distributed only through sales and service
packs to customers or personal-computer manufacturers. While Windows is much
more widely used than UNIX, it is far from having become a paradigmatic pedagogical
object; its integrity is predominantly legal, not technical or pedagogical. Or, in
pedagogical terms, Windows is to fish as UNIX is to fishing lessons.
Lionss Commentary is also known as ”the most photocopied document in computer 388

science.” Lions was a researcher and senior lecturer at the University of New South
Wales in the early 1970s; after reading the first paper by Ritchie and Thompson on
UNIX, he convinced his colleagues to purchase a license from AT&T.137 Lions, like
many researchers, was impressed by the quality of the system, and he was, like all of
the UNIX users of that period, intimately [pg133] familiar with the UNIX source codea
necessity in order to install, run, or repair it. Lions began using the system to teach
his classes on operating systems, and in the course of doing so he produced a
textbook of sorts, which consisted of the entire source code of UNIX version 6 (V6),
along with elaborate, line-by-line commentary and explanation. The value of this
textbook can hardly be underestimated. Access to machines and software that could
be used to understand how a real system worked was very limited: ”Real computers
with real operating systems were locked up in machine rooms and committed to
processing twenty four hours a day. UNIX changed that.”138 Berny Goodheart, in an
appreciation of Lionss Commentary, reiterated this sense of the practical usefulness
of the source code and commentary: ”It is important to understand the significance of
Johns work at that time: for students studying computer science in the 1970s,
complex issues such as process scheduling, security, synchronization, file systems
and other concepts were beyond normal comprehension and were extremely difficult
to teachthere simply wasnt anything available with enough accessibility for students
to use as a case study. Instead a students discipline in computer science was earned
by punching holes in cards, collecting fan-fold paper printouts, and so on. Basically, a
computer operating system in that era was considered to be a huge chunk of
inaccessible proprietary code.”139

Lionss commentary was a unique document in the world of computer science, 389

containing a kind of key to learning about a central component of the computer, one
that very few people would have had access to in the 1970s. It shows how UNIX was
ported not only to machines (which were scarce) but also to the minds of young
researchers and student programmers (which were plentiful). Several generations of
both academic computer scientists and students who went on to work for computer
137Ken Thompson and Dennis Ritchie, ”The Unix Operating System,” Bell Systems Technical Journal
(1974).
138Greg Rose, quoted in Lions, Commentary, n.p.
139Lions, Commentary, n.p.

Two Bits Christopher M. Kelty 107

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

or software corporations were trained on photocopies of UNIX source code, with a
whiff of toner and illicit circulation: a distributed operating system in the textual
sense.
Unfortunately, Commentary was also legally restricted in its distribution. AT&T and 390

Western Electric, in hopes that they could maintain trade-secret status for UNIX,
allowed only very limited circulation of the book. At first, Lions was given permission
to distribute single copies only to people who already possessed a license for UNIX V6;
later Bell Labs itself would distribute Commentary [pg134] briefly, but only to licensed
users, and not for sale, distribution, or copying. Nonetheless, nearly everyone seems
to have possessed a dog-eared, nth-generation copy. Peter Reintjes writes, ”We soon
came into possession of what looked like a fifth generation photocopy and someone
who shall remain nameless spent all night in the copier room spawning a sixth, an act
expressly forbidden by a carefully worded disclaimer on the first page. Four
remarkable things were happening at the same time. One, we had discovered the first
piece of software that would inspire rather than annoy us; two, we had acquired what
amounted to a literary criticism of that computer software; three, we were making the
single most significant advancement of our education in computer science by actually
reading an entire operating system; and four, we were breaking the law.”140

Thus, these generations of computer-science students and academics shared a 391

secreta trade secret become open secret. Every student who learned the essentials of
the UNIX operating system from a photocopy of Lionss commentary, also learned
about AT&Ts attempt to control its legal distribution on the front cover of their
textbook. The parallel development of photocopying has a nice resonance here;
together with home cassette taping of music and the introduction of the
video-cassette recorder, photocopying helped drive the changes to copyright law
adopted in 1976.
Thirty years later, and long after the source code in it had been completely replaced, 392

Lionss Commentary is still widely admired by geeks. Even though Free Software has
come full circle in providing students with an actual operating system that can be
legally studied, taught, copied, and implemented, the kind of ”literary criticism” that
Lionss work represents is still extremely rare; even reading obsolete code with clear
commentary is one of the few ways to truly understand the design elements and
clever implementations that made the UNIX operating system so different from its
predecessors and even many of its successors, few, if any of which have been so
successfully ported to the minds of so many students.
Lionss Commentary contributed to the creation of a worldwide community of people 393

whose connection to each other was formed by a body of source code, both in its
implemented form and in its textual, photocopied form. This nascent recursive public
not only understood itself as belonging to a technical elite which was constituted by
its creation, understanding, and promotion of a particular [pg135] technical tool, but
also recognized itself as ”breaking the law,” a community constituted in opposition to
forms of power that governed the circulation, distribution, modification, and creation
of the very tools they were learning to make as part of their vocation. The material
140Ibid.

Two Bits Christopher M. Kelty 108

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

connection shared around the world by UNIX-loving geeks to their source code is not
a mere technical experience, but a social and legal one as well.
Lions was not the only researcher to recognize that teaching the source code was the 394

swiftest route to comprehension. The other story of the circulation of source code
concerns Andrew Tanenbaum, a well-respected computer scientist and an author of
standard textbooks on computer architecture, operating systems, and networking.141
In the 1970s Tanenbaum had also used UNIX as a teaching tool in classes at the Vrije
Universiteit, in Amsterdam. Because the source code was distributed with the binary
code, he could have his students explore directly the implementations of the system,
and he often used the source code and the Lions book in his classes. But, according
to his Operating Systems: Design and Implementation (1987), ”When AT&T released
Version 7 [ca. 1979], it began to realize that UNIX was a valuable commercial product,
so it issued Version 7 with a license that prohibited the source code from being
studied in courses, in order to avoid endangering its status as a trade secret. Many
universities complied by simply dropping the study of UNIX, and teaching only theory”
(13). For Tanenbaum, this was an unacceptable alternativebut so, apparently, was
continuing to break the law by teaching UNIX in his courses. And so he proceeded to
create a completely new UNIX-like operating system that used not a single line of
AT&T source code. He called his creation Minix. It was a stripped-down version
intended to run on personal computers (IBM PCs), and to be distributed along with the
textbook Operating Systems, published by Prentice Hall.142

Minix became as widely used in the 1980s as a teaching tool as Lionss source code 395

had been in the 1970s. According to Tanenbaum, the Usenet group comp.os.minix
had reached 40,000 members by the late 1980s, and he was receiving constant
suggestions for changes and improvements to the operating system. His own
commitment to teaching meant that he incorporated few of these suggestions, an
effort to keep the system simple enough to be printed in a textbook and understood
by undergraduates. Minix [pg136] was freely available as source code, and it was a fully
functioning operating system, even a potential alternative to UNIX that would run on
a personal computer. Here was a clear example of the conceptual integrity of UNIX
being communicated to another generation of computer-science students:
Tanenbaums textbook is not called ”UNIX Operating Systems”it is called Operating
Systems. The clear implication is that UNIX represented the clearest example of the
principles that should guide the creation of any operating system: it was, for all
intents and purposes, state of the art even twenty years after it was first
conceived.
Minix was not commercial software, but nor was it Free Software. It was copyrighted 396

and controlled by Tanenbaums publisher, Prentice Hall. Because it used no AT&T
source code, Minix was also legally independent, a legal object of its own. The fact
that it was intended to be legally distinct from, yet conceptually true to UNIX is a
141Tanenbaums two most famous textbooks are Operating Systems and Computer Networks, which have
seen three and four editions respectively.
142Tanenbaum was not the only person to follow this route. The other acknowledged giant in the
computer-science textbook world, Douglas Comer, created Xinu and Xinu-PC (UNIX spelled backwards)
in Operating Systems Design in 1984.

Two Bits Christopher M. Kelty 109

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

clear indication of the kinds of tensions that govern the creation and sharing of
source code. The ironic apotheosis of Minix as the pedagogical gold standard for
studying UNIX came in 1991-92, when a young Linus Torvalds created a ”fork” of
Minix, also rewritten from scratch, that would go on to become the paradigmatic
piece of Free Software: Linux. Tanenbaums purpose for Minix was that it remain a
pedagogically useful operating systemsmall, concise, and illustrativewhereas Torvalds
wanted to extend and expand his version of Minix to take full advantage of the kinds
of hardware being produced in the 1990s. Both, however, were committed to
source-code visibility and sharing as the swiftest route to complete comprehension of
operating-systems principles.

Forking UNIX 397

Tanenbaums need to produce Minix was driven by a desire to share the source code 398

of UNIX with students, a desire AT&T was manifestly uncomfortable with and which
threatened the trade-secret status of their property. The fact that Minix might be
called a fork of UNIX is a key aspect of the political economy of operating systems
and social systems. Forking generally refers to the creation of new, modified source
code from an original base of source code, resulting in two distinct programs with the
same parent. Whereas the modification of an engine results only in a modified engine,
the [pg137] modification of source code implies differentiation and reproduction,
because of the ease with which it can be copied.
How could Minixa complete rewritestill be considered the same object? Considered 399

solely from the perspective of trade-secret law, the two objects were distinct, though
from the perspective of copyright there was perhaps a case for infringement,
although AT&T did not rely on copyright as much as on trade secret. From a technical
perspective, the functions and processes that the software accomplishes are the
same, but the means by which they are coded to do so are different. And from a
pedagogical standpoint, the two are identicalthey exemplify certain core features of
an operating system (file-system structure, memory paging, process management)all
the rest is optimization, or bells and whistles. Understanding the nature of forking
requires also that UNIX be understood from a social perspective, that is, from the
perspective of an operating system created and modified by user-developers around
the world according to particular and partial demands. It forms the basis for the
emergence of a robust recursive public.
One of the more important instances of the forking of UNIXs perambulatory source 400

code and the developing community of UNIX co-developers is the story of the
Berkeley Software Distribution and its incorporation of the TCP/IP protocols. In 1975
Ken Thompson took a sabbatical in his hometown of Berkeley, California, where he
helped members of the computer-science department with their installations of UNIX,
arriving with V6 and the ”50 bug fixes” diff tape. Ken had begun work on a compiler
for the Pascal programming language that would run on UNIX, and this work was
taken up by two young graduate students: Bill Joy and Chuck Hartley. (Joy would later
co-found Sun Microsystems, one of the most successful UNIX-based workstation
companies in the history of the industry.)

Two Bits Christopher M. Kelty 110

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Joy, above nearly all others, enthusiastically participated in the informal distribution 401

of source code. With a popular and well-built Pascal system, and a new text editor
called ex (later vi), he created the Berkeley Software Distribution (BSD), a set of tools
that could be used in combination with the UNIX operating system. They were
extensions to the original UNIX operating system, but not a complete, rewritten
version that might replace it. By all accounts, Joy served as a kind of one-man
software-distribution house, making tapes and posting them, taking orders and
cashing checksall in [pg138] addition to creating software.143 UNIX users around the
world soon learned of this valuable set of extensions to the system, and before long,
many were differentiating between AT&T UNIX and BSD UNIX.
According to Don Libes, Bell Labs allowed Berkeley to distribute its extensions to UNIX 402

so long as the recipients also had a license from Bell Labs for the original UNIX (an
arrangement similar to the one that governed Lionss Commentary).144 From about
1976 until about 1981, BSD slowly became an independent distributionindeed, a
complete version of UNIXwell-known for the vi editor and the Pascal compiler, but
also for the addition of virtual memory and its implementation on DECs VAX
machines.145 It should be clear that the unusual quasi-commercial status of AT&Ts
UNIX allowed for this situation in a way that a fully commercial computer corporation
would never have allowed. Consider, for instance, the fact that many UNIX
usersstudents at a university, for instancecould not essentially know whether they
were using an AT&T product or something called BSD UNIX created at Berkeley. The
operating system functioned in the same way and, except for the presence of
copyright notices that occasionally flashed on the screen, did not make any show of
asserting its brand identity (that would come later, in the 1980s). Whereas a
commercial computer manufacturer would have allowed something like BSD only if it
were incorporated into and distributed as a single, marketable, and identifiable
product with a clever name, AT&T turned something of a blind eye to the proliferation
and spread of AT&T UNIX and the result were forks in the project: distinct bodies of
source code, each an instance of something called UNIX.
As BSD developed, it gained different kinds of functionality than the UNIX from which 403

it was spawned. The most significant development was the inclusion of code that
allowed it to connect computers to the Arpanet, using the TCP/IP protocols designed
by Vinton Cerf and Robert Kahn. The TCP/IP protocols were a key feature of the
Arpanet, overseen by the Information Processing and Techniques Office (IPTO) of the
Defense Advanced Research Projects Agency (DARPA) from its inception in 1967 until
about 1977. The goal of the protocols was to allow different networks, each with its

143McKusick, ”Twenty Years of Berkeley Unix,” 32.
144Libes and Ressler, Life with UNIX, 16-17.
145A recent court case between the Utah-based SCOthe current owner of the legal rights to the original
UNIX source codeand IBM raised yet again the question of how much of the original UNIX source code
exists in the BSD distribution. SCO alleges that IBM (and Linus Torvalds) inserted SCO-owned UNIX
source code into the Linux kernel. However, the incredibly circuitous route of the ”original” source code
makes these claims hard to ferret out: it was developed at Bell Labs, licensed to multiple universities,
used as a basis for BSD, sold to an earlier version of the company SCO (then known as the Santa Cruz
Operation), which created a version called Xenix in cooperation with Microsoft. See the diagram by Eric
Lévénez at ⌜ http://www.levenez.com/unix/ ⌟ . For more detail on this case, see www.groklaw.com.

Two Bits Christopher M. Kelty 111

http://www.levenez.com/unix/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

own machines and administrative boundaries, to be connected to each other.146
Although there is a common heritagein the form of J. C. R. Lickliderwhich ties the
imagination of the time-sharing operating [pg139] system to the creation of the
”galactic network,” the Arpanet initially developed completely independent of
UNIX.147 As a time-sharing operating system, UNIX was meant to allow the sharing of
resources on a single computer, whether mainframe or minicomputer, but it was not
initially intended to be connected to a network of other computers running UNIX, as is
the case today.148 The goal of Arpanet, by contrast, was explicitly to achieve the
sharing of resources located on diverse machines across diverse networks.
To achieve the benefits of TCP/IP, the resources needed to be implemented in all of 404

the different operating systems that were connected to the Arpanetwhatever
operating system and machine happened to be in use at each of the nodes. However,
by 1977, the original machines used on the network were outdated and increasingly
difficult to maintain and, according to Kirk McKusick, the greatest expense was that of
porting the old protocol software to new machines. Hence, IPTO decided to pursue in
part a strategy of achieving coordination at the operating-system level, and they
chose UNIX as one of the core platforms on which to standardize. In short, they had
seen the light of portability. In about 1978 IPTO granted a contract to Bolt, Beranek,
and Newman (BBN), one of the original Arpanet contractors, to integrate the TCP/IP
protocols into the UNIX operating system.
But then something odd happened, according to Salus: ”An initial prototype was done 405

by BBN and given to Berkeley. Bill [Joy] immediately started hacking on it because it
would only run an Ethernet at about 56K/sec utilizing 100% of the CPU on a 750. . . .
Bill lobotomized the code and increased its performance to on the order of 700KB/sec.
This caused some consternation with BBN when they came in with their finished
version, and Bill wouldnt accept it. There were battles for years after, about which
version would be in the system. The Berkeley version ultimately won.”149

Although it is not clear, it appears BBN intended to give Joy the code in order to 406

include it in his BSD version of UNIX for distribution, and that Joy and collaborators
intended to cooperate with Rob Gurwitz of BBN on a final implementation, but
Berkeley insisted on ”improving” the code to make it perform more to their needs,
and BBN apparently dissented from this.150 One result of this scuffle between BSD
and BBN was a genuine fork: two bodies of code that did the same thing, competing
with each other to become the standard UNIX implementation of TCP/IP. Here, then,
was a [pg140] case of sharing source code that led to the creation of different versions
146See Vinton G. Cerf and Robert Kahn, ”A Protocol for Packet Network Interconnection.” For the history,
see Abbate, Inventing the Internet; Norberg and ONeill, A History of the Information Techniques
Processing Office. Also see chapters 1 and 5 herein for more detail on the role of these protocols and the
RFC process.
147Waldrop, The Dream Machine, chaps. 5 and 6.
148The exception being a not unimportant tool called Unix to Unix Copy Protocol, or uucp, which was
widely used to transmit data by phone and formed the bases for the creation of the Usenet. See Hauben
and Hauben, Netizens.
149Salus, A Quarter Century of UNIX, 161.
150TCP/IP Digest 1.6 (11 November 1981) contains Joys explanation of Berkeleys intentions (Message-ID:
⌜anews.aucbvax.5236 ⌟).

Two Bits Christopher M. Kelty 112

http://groups.google.com/groups?selm=anews.aucbvax.5236
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of softwaresharing without collaboration. Some sites used the BBN code, some used
the Berkeley code.
Forking, however, does not imply permanent divergence, and the continual 407

improvement, porting, and sharing of software can have odd consequences when
forks occur. On the one hand, there are particular pieces of source code: they must
be identifiable and exact, and prepended with a copyright notice, as was the case of
the Berkeley code, which was famously and vigorously policed by the University of
California regents, who allowed for a very liberal distribution of BSD code on the
condition that the copyright notice was retained. On the other hand, there are
particular named collections of code that work together (e.g., UNIX, or
DARPA-approved UNIX, or later, Certified Open Source [sm]) and are often identified
by a trademark symbol intended, legally speaking, to differentiate products, not to
assert ownership of particular instances of a product.
The odd consequence is this: Bill Joys specific TCP/IP code was incorporated not only 408

into BSD UNIX, but also into other versions of UNIX, including the UNIX distributed by
AT&T (which had originally licensed UNIX to Berkeley) with the Berkeley copyright
notice removed. This bizarre, tangled bank of licenses and code resulted in a famous
suit and countersuit between AT&T and Berkeley, in which the intricacies of this
situation were sorted out.151 An innocent bystander, expecting UNIX to be a single
thing, might be surprised to find that it takes different forms for reasons that are all
but impossible to identify, but the cause of which is clear: different versions of
sharing in conflict with one another; different moral and technical imaginations of
order that result in complex entanglements of value and code.
The BSD fork of UNIX (and the subfork of TCP/IP) was only one of many to come. By 409

the early 1980s, a proliferation of UNIX forks had emerged and would be followed
shortly by a very robust commercialization. At the same time, the circulation of
source code started to slow, as corporations began to compete by adding features
and creating hardware specifically designed to run UNIX (such as the Sun Sparc
workstation and the Solaris operating system, the result of Joys commercialization of
BSD in the 1980s). The question of how to make all of these versions work together
eventually became the subject of the open-systems discussions that would dominate
the workstation and networking sectors of the computer [pg141] market from the early
1980s to 1993, when the dual success of Windows NT and the arrival of the Internet
into public consciousness changed the fortunes of the UNIX industry.
A second, and more important, effect of the struggle between BBN and BSD was 410

simply the widespread adoption of the TCP/IP protocols. An estimated 98 percent of
computer-science departments in the United States and many such departments
around the world incorporated the TCP/IP protocols into their UNIX systems and
gained instant access to Arpanet.152 The fact that this occurred when it did is
important: a few years later, during the era of the commercialization of UNIX, these

151See Andrew Leonard, ”BSD Unix: Power to the People, from the Code,” Salon, 16 May 2000,
⌜ http://archive.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/ ⌟ .
152Norberg and ONeill, A History of the Information Techniques Processing Office, 184-85. They cite
Comer, Internetworking with TCP/IP, 6 for the figure.

Two Bits Christopher M. Kelty 113

http://archive.salon.com/tech/fsp/2000/05/16/chapter_2_part_one/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

protocols might very well not have been widely implemented (or more likely
implemented in incompatible, nonstandard forms) by manufacturers, whereas before
1983, university computer scientists saw every benefit in doing so if it meant they
could easily connect to the largest single computer network on the planet. The large,
already functioning, relatively standard implementation of TCP/IP on UNIX (and the
ability to look at the source code) gave these protocols a tremendous advantage in
terms of their survival and success as the basis of a global and singular network.

Conclusion 411

The UNIX operating system is not just a technical achievement; it is the creation of a 412

set of norms for sharing source code in an unusual environment: quasi-commercial,
quasi-academic, networked, and planetwide. Sharing UNIX source code has taken
three basic forms: porting source code (transferring it from one machine to another);
teaching source code, or ”porting” it to students in a pedagogical setting where the
use of an actual working operating system vastly facilitates the teaching of theory
and concepts; and forking source code (modifying the existing source code to do
something new or different). This play of proliferation and differentiation is essential
to the remarkably stable identity of UNIX, but that identity exists in multiple forms:
technical (as a functioning, self-compatible operating system), legal (as a
license-circumscribed version subject to intellectual property and commercial law),
and pedagogical (as a conceptual exemplar, the paradigm of an operating system).
Source code shared in this manner is essentially unlike any other kind of [pg142] source
code in the world of computers, whether academic or commercial. It raises troubling
questions about standardization, about control and audit, and about legitimacy that
haunts not only UNIX but the Internet and its various ”open” protocols as well.
Sharing source code in Free Software looks the way it does today because of UNIX. 413

But UNIX looks the way it does not because of the inventive genius of Thompson and
Ritchie, or the marketing and management brilliance of AT&T, but because sharing
produces its own kind of order: operating systems and social systems. The fact that
geeks are wont to speak of ”the UNIX philosophy” means that UNIX is not just an
operating system but a way of organizing the complex relations of life and work
through technical means; a way of charting and breaching the boundaries between
the academic, the aesthetic, and the commercial; a way of implementing ideas of a
moral and technical order. Whats more, as source code comes to include more and
more of the activities of everyday communication and creationas it comes to replace
writing and supplement thinkingthe genealogy of its portability and the history of its
forking will illuminate the kinds of order emerging in practices and technologies far
removed from operating systemsbut tied intimately to the UNIX philosophy.

Two Bits Christopher M. Kelty 114

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

5.Conceiving Open Systems 414

The great thing about standards is that there are so many to choose from.153 415

Openness is an unruly concept. While free tends toward ambiguity (free as in speech, 416

or free as in beer?), open tends toward obfuscation. Everyone claims to be open,
everyone has something to share, everyone agrees that being open is the obvious
thing to doafter all, openness is the other half of ”open source”but for all its
obviousness, being ”open” is perhaps the most complex component of Free Software.
It is never quite clear whether being open is a means or an end. Worse, the opposite
of open in this case (specifically, ”open systems”) is not closed, but
”proprietary”signaling the complicated imbrication of the technical, the legal, and the
commercial.
In this chapter I tell the story of the contest over the meaning of ”open systems” from 417

1980 to 1993, a contest to create a simultaneously moral and technical infrastructure
within the computer [pg144] industry.154 The infrastructure in question includes
technical componentsthe UNIX operating system and the TCP/IP protocols of the
Internet as open systemsbut it also includes ”moral” components, including the
demand for structures of fair and open competition, antimonopoly and open markets,
and open-standards processes for high-tech networked computers and software in
the 1980s.155 By moral, I mean imaginations of the proper order of collective political
and commercial action; referring to much more than simply how individuals should
act, moral signifies a vision of how economy and society should be ordered
collectively.
The open-systems story is also a story of the blind spot of open systemsin that blind 418

spot is intellectual property. The story reveals a tension between incompatible
moral-technical orders: on the one hand, the promise of multiple manufacturers and
corporations creating interoperable components and selling them in an open,
heterogeneous market; on the other, an intellectual-property system that encouraged
jealous guarding and secrecy, and granted monopoly status to source code, designs,
and ideas in order to differentiate products and promote competition. The tension
proved irresolvable: without shared source code, for instance, interoperable operating
systems are impossible. Without interoperable operating systems, internetworking
and portable applications are impossible. Without portable applications that can run
on any system, open markets are impossible. Without open markets, monopoly power

153Quoted in Libes and Ressler, Life with UNIX, 67, and also in Critchley and Batty, Open Systems, 17. I
first heard it in an interview with Sean Doyle in 1998.
154Moral in this usage signals the ”moral and social order” I explored through the concept of social
imaginaries in chapter 1. Or, in the Scottish Enlightenment sense of Adam Smith, it points to the right
organization and relations of exchange among humans.
155There is, of course, a relatively robust discourse of open systems in biology, sociology, systems
theory, and cybernetics; however, that meaning of open systems is more or less completely distinct
from what openness and open systems came to mean in the computer industry in the period
book-ended by the arrivals of the personal computer and the explosion of the Internet (ca. 1980-93).
One relevant overlap between these two meanings can be found in the work of Carl Hewitt at the MIT
Media Lab and in the interest in ”agorics” taken by K. Eric Drexler, Bernardo Huberman, and Mark S.
Miller. See Huberman, The Ecology of Computation.

Two Bits Christopher M. Kelty 115

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

reigns.
Standardization was at the heart of the contest, but by whom and by what means was 419

never resolved. The dream of open systems, pursued in an entirely unregulated
industry, resulted in a complicated experiment in novel forms of standardization and
cooperation. The creation of a ”standard” operating system based on UNIX is the
story of a failure, a kind of ”figuring out” gone haywire, which resulted in huge
consortia of computer manufacturers attempting to work together and compete with
each other at the same time. Meanwhile, the successful creation of a ”standard”
networking protocolknown as the Open Systems Interconnection Reference Model
(OSI)is a story of failure that hides a larger success; OSI was eclipsed in the same
period by the rapid and ad hoc adoption of the Transmission Control Protocol/Internet
Protocol (TCP/IP), which used a radically different standardization process and which
succeeded for a number of surprising reasons, allowing the Internet [pg145] to take the
form it did in the 1990s and ultimately exemplifying the moral-technical imaginary of
a recursive publicand one at the heart of the practices of Free Software.
The conceiving of openness, which is the central plot of these two stories, has 420

become an essential component of the contemporary practice and power of Free
Software. These early battles created a kind of widespread readiness for Free
Software in the 1990s, a recognition of Free Software as a removal of open systems
blind spot, as much as an exploitation of its power. The geek ideal of openness and a
moral-technical order (the one that made Napster so significant an event) was forged
in the era of open systems; without this concrete historical conception of how to
maintain openness in technical and moral terms, the recursive public of geeks would
be just another hierarchical closed organizationa corporation manquéand not an
independent public serving as a check on the kinds of destructive power that
dominated the open-systems contest.

Hopelessly Plural 421

Big iron, silos, legacy systems, turnkey systems, dinosaurs, mainframes: with the 422

benefit of hindsight, the computer industry of the 1960s to the 1980s appears to be
backward and closed, to have literally painted itself into a corner, as an early Intel
advertisement suggests (figure 3). Contemporary observers who show disgust and
impatience with the form that computers took in this era are without fail supporters of
open systems and opponents of proprietary systems that ”lock in” customers to
specific vendors and create artificial demands for support, integration, and
management of resources. Open systems (were it allowed to flourish) would solve all
these problems.
Given the promise of a ”general-purpose computer,” it should seem ironic at best 423

that open systems needed to be created. But the general-purpose computer never
came into being. We do not live in the world of The Computer, but in a world of
computers: myriad, incompatible, specific machines. The design of specialized
machines (or ”architectures”) was, and still is, key to a competitive industry in
computers. It required CPUs and components and associated software that could be

Two Bits Christopher M. Kelty 116

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

clearly qualified and marketed [pg146] [pg147] as distinct products: the DEC PDP-11 or the
IBM 360 or the CDC 6600. On the Fordist model of automobile production, the
computer industrys mission was to render desired functions (scientific calculation,
bookkeeping, reservations management) in a large box with a button on it (or a very
large number of buttons on increasingly smaller boxes). Despite the theoretical
possibility, such computers were not designed to do anything, but, rather, to do
specific kinds of calculations exceedingly well. They were objects customized to
particular markets.
2bits_05_03-100.png,w619h972 [* Open systems is the solution to painting yourself 424

into a corner. Intel advertisement, Wall Street Journal, 30 May 1984.]
The marketing strategy was therefore extremely stable from about 1955 to about 425

1980: identify customers with computing needs, build a computer to serve them,
provide them with all of the equipment, software, support, or peripherals they need to
do the joband charge a large amount. Organizationally speaking, it was an industry
dominated by ”IBM and the seven dwarfs”: Hewlett-Packard, Honeywell, Control Data,
General Electric, NCR, RCA, Univac, and Burroughs, with a few upstarts like DEC in the
wings.
By the 1980s, however, a certain inversion had happened. Computers had become 426

smaller and faster; there were more and more of them, and it was becoming
increasingly clear to the ”big iron” manufacturers that what was most valuable to
users was the information they generated, not the machines that did the generating.
Such a realization, so the story goes, leads to a demand for interchangeability,
interoperability, information sharing, and networking. It also presents the nightmarish
problems of conversion between a bewildering, heterogeneous, and rapidly growing
array of hardware, software, protocols, and systems. As one conference paper on the
subject of evaluating open systems put it, ”At some point a large enterprise will look
around and see a huge amount of equipment and software that will not work together.
Most importantly, the information stored on these diverse platforms is not being
shared, leading to unnecessary duplication and lost profit.”156

Open systems emerged in the 1980s as the name of the solution to this problem: an 427

approach to the design of systems that, if all participants were to adopt it, would lead
to widely interoperable, integrated machines that could send, store, process, and
receive the users information. In marketing and public-relations terms, it would
provide ”seamless integration.”
In theory, open systems was simply a question of standards adoption. For instance, if 428

all the manufacturers of UNIX systems could [pg148] be convinced to adopt the same
basic standard for the operating system, then seamless integration would naturally
follow as all the various applications could be written once to run on any variant UNIX
system, regardless of which company made it. In reality, such a standard was far
from obvious, difficult to create, and even more difficult to enforce. As such, the
meaning of open systems was ”hopelessly plural,” and the term came to mean an
incredibly diverse array of things.

156Keves, ”Open Systems Formal Evaluation Process,” 87.

Two Bits Christopher M. Kelty 117

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

”Openness” is precisely the kind of concept that wavers between end and means. Is 429

openness good in itself, or is openness a means to achieve something elseand if so
what? Who wants to achieve openness, and for what purpose? Is openness a goal? Or
is it a means by which a different goalsay, ”interoperability” or ”integration”is
achieved? Whose goals are these, and who sets them? Are the goals of corporations
different from or at odds with the goals of university researchers or government
officials? Are there large central visions to which the activities of all are ultimately
subordinate?
Between 1980 and 1993, no person or company or computer industry consortium 430

explicitly set openness as the goal that organizations, corporations, or programmers
should aim at, but, by the same token, hardly anyone dissented from the demand for
openness. As such, it appears clearly as a kind of cultural imperative, reflecting a
longstanding social imaginary with roots in liberal democratic notions, versions of a
free market and ideals of the free exchange of knowledge, but confronting changed
technical conditions that bring the moral ideas of order into relief, and into
question.
In the 1980s everyone seemed to want some kind of openness, whether among 431

manufacturers or customers, from General Motors to the armed forces.157 The
debates, both rhetorical and technical, about the meaning of open systems have
produced a slough of writings, largely directed at corporate IT managers and CIOs.
For instance, Terry A. Critchley and K. C. Batty, the authors of Open Systems: The
Reality (1993), claim to have collected over a hundred definitions of open systems.
The definitions stress different aspectsfrom interoperability of heterogeneous
machines, to compatibility of different applications, to portability of operating
systems, to legitimate standards with open-interface definitionsincluding those that
privilege ideologies of a free market, as does Bill Gatess definition: ”Theres nothing
more open than the PC market. . . . [U]sers can choose the latest and greatest
software.” The range [pg149] of meanings was huge and oriented along multiple axes:
what, to whom, how, and so on. Open systems could mean that source code was
open to view or that only the specifications or interfaces were; it could mean
”available to certain third parties” or ”available to everyone, including competitors”;
it could mean self-publishing, well-defined interfaces and application programming
interfaces (APIs), or it could mean sticking to standards set by governments and
professional societies. To cynics, it simply meant that the marketing department liked
the word open and used it a lot.
One part of the definition, however, was both consistent and extremely important: the 432

opposite of an ”open system” was not a ”closed system” but a ”proprietary system.”
In industries other than networking and computing the word proprietary will most
likely have a positive valence, as in ”our exclusive proprietary technology.” But in the
context of computers and networks such a usage became anathema in the 1980s and
1990s; what customers reportedly wanted was a system that worked nicely with other
157General Motors stirred strong interest in open systems by creating, in 1985, its Manufacturing
Automation Protocol (MAP), which was built on UNIX. At the time, General Motors was the second-largest
purchaser of computer equipment after the government. The Department of Defense and the U.S. Air
Force also adopted and required POSIX-compliant UNIX systems early on.

Two Bits Christopher M. Kelty 118

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

systems, and that system had to be by definition open since no single company could
provide all of the possible needs of a modern business or government agency. And
even if it could, it shouldnt be allowed to. For instance, ”In the beginning was the
word and the word was proprietary. IBM showed the way, purveying machines that
existed in splendid isolation. They could not be operated using programs written for
any other computer; they could not communicate with the machines of competitors.
If your company started out buying computers of various sizes from the International
Business Machines Corporation because it was the biggest and best, you soon found
yourself locked as securely to Big Blue as a manacled wretch in a medieval dungeon.
When an IBM rival unveiled a technologically advanced product, you could only sigh;
it might be years before the new technology showed up in the IBM line.”158

With the exception of IBM (and to some extent its closest competitors: 433

Hewlett-Packard, Burroughs, and Unisys), computer corporations in the 1980s sought
to distance themselves from such ”medieval” proprietary solutions (such talk also
echoes that of usable pasts of the Protestant Reformation often used by geeks). New
firms like Sun and Apollo deliberately berated the IBM model. Bill Joy reportedly called
one of IBMs new releases in the 1980s a ”grazing dinosaur with a truck outside
pumping its bodily fluids through it.”159

Open systems was never a simple solution though: all that complexity in hardware, 434

software, components, and peripherals could only be solved by pushing hard for
standardseven for a single standard. Or, to put it differently, during the 1980s,
everyone agreed that open systems was a great idea, but no one agreed on which
open systems. As one of the anonymous speakers in Open Systems: The Reality puts
it, ”It took me a long time to understand what (the industry) meant by open vs.
proprietary, but I finally figured it out. From the perspective of any one supplier, open
meant our products. Proprietary meant everyone elses products.”160

For most supporters of open systems, the opposition between open and proprietary 435

had a certain moral force: it indicated that corporations providing the latter were
dangerously close to being evil, immoral, perhaps even criminal monopolists. Adrian
Gropper and Sean Doyle, the principals in Amicas, an Internet teleradiology company,
for instance, routinely referred to the large proprietary healthcare-information
systems they confronted in these terms: open systems are the way of light, not dark.
Although there are no doubt arguments for closed systemssecurity, privacy,
robustness, controlthe demand for interoperability does not mean that such closure
will be sacrificed.161 Closure was also a choice. That is, open systems was an issue of
sovereignty, involving the right, in a moral sense, of a customer to control a technical
order hemmed in by firm standards that allowed customers to combine a number of
different pieces of hardware and software purchased in an open market and to control

158Paul Fusco, ”The Gospel According to Joy,” New York Times, 27 March 1988, Sunday Magazine, 28.
159”Dinosaur” entry, The Jargon File, ⌜ http://catb.org/jargon/html/D/dinosaur.html ⌟ .
160Crichtley and Batty, Open Systems, 10.
161An excellent counterpoint here is Paul Edwardss The Closed World, which clearly demonstrates the
appeal of a thoroughly and hierarchically controlled system such as the Semi-Automated Ground
Environment (SAGE) of the Department of Defense against the emergence of more ”green world”
models of openness.

Two Bits Christopher M. Kelty 119

http://catb.org/jargon/html/D/dinosaur.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

the configuration themselvesnot enforced openness, but the right to decide oneself
on whether and how to be open or closed.
The open-systems idea of moral order conflicts, however, with an idea of moral order 436

represented by intellectual property: the right, encoded in law, to assert ownership
over and control particular bits of source code, software, and hardware. The call for
and the market in open systems were never imagined as being opposed to
intellectual property as such, even if the opposition between open and proprietary
seemed to indicate a kind of subterranean recognition of the role of intellectual
property. The issue was never explicitly broached. Of the hundred definitions in Open
Systems, only one definition comes close to including legal issues: ”Speaker at
Interop 90 (paraphrased and maybe apocryphal): If you ask to gain access to a
technology and the response you get back is a price list, then [pg151] that technology is
”open.” If what you get back is a letter from a lawyer, then its not ”open.””162

Openness here is not equated with freedom to copy and modify, but with the freedom 437

to buy access to any aspect of a system without signing a contract, a nondisclosure
agreement, or any other legal document besides a check. The ground rules of
competition are unchallenged: the existing system of intellectual propertya system
that was expanded and strengthened in this periodwas a sine qua non of
competition.
Openness understood in this manner means an open market in which it is possible to 438

buy standardized things which are neither obscure nor secret, but can be examined
and judgeda ”commodity” market, where products have functions, where quality is
comparable and forms the basis for vigorous competition. What this notion implies is
freedom from monopoly control by corporations over products, a freedom that is
nearly impossible to maintain when the entire industry is structured around the
monopoly control of intellectual property through trade secret, patent, or copyright.
The blind spot hides the contradiction between an industry imagined on the model of
manufacturing distinct and tangible products, and the reality of an industry that
wavers somewhere between service and product, dealing in intangible intellectual
property whose boundaries and identity are in fact defined by how they are
exchanged, circulated, and shared, as in the case of the proliferation and
differentiation of the UNIX operating system.
There was no disagreement about the necessity of intellectual property in the 439

computer industry of the 1980s, and there was no perceived contradiction in the
demands for openness. Indeed, openness could only make sense if it were built on
top of a stable system of intellectual property that allowed competitors to maintain
clear definitions of the boundaries of their products. But the creation of interoperable
components seemed to demand a relaxation of the secrecy and guardedness
necessary to ”protect” intellectual property. Indeed, for some observers, the problem
of openness created the opportunity for the worst kinds of cynical logic, as in this
example from Regis McKennas Whos Afraid of Big Blue?

Users want open environments, so the vendors had better comply. In fact, it is a 440

162Crichtley and Batty, Open Systems, 13.

Two Bits Christopher M. Kelty 120

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

good idea to support new standards early. That way, you can help control the
development of standards. Moreover, you can [pg152] take credit for driving the
standard. Supporting standards is a way to demonstrate that youre on the side of
users. On the other hand, companies cannot compete on the basis of standards
alone. Companies that live by standards can die by standards. Other companies,
adhering to the same standards, could win on the basis of superior manufacturing
technology. If companies do nothing but adhere to standards, then all computers
will become commodities, and nobody will be able to make any money. Thus,
companies must keep something proprietary, something to differentiate their
products.163

By such an account, open systems would be tantamount to economic regression, a 441

state of pure competition on the basis of manufacturing superiority, and not on the
basis of the competitive advantage granted by the monopoly of intellectual property,
the clear hallmark of a high-tech industry.164 It was an irresolvable tension between
the desire for a cooperative, market-based infrastructure and the structure of an
intellectual-property system ill-suited to the technical realities within which
companies and customers operateda tension revealing the reorientation of
knowledge and power with respect to creation, dissemination, and modification of
knowledge.
From the perspective of intellectual property, ideas, designs, and source code are 442

everythingif a company were to release the source code, and allow other vendors to
build on it, then what exactly would they be left to sell? Open systems did not mean
anything like free, open-source, or public-domain computing. But the fact that
competition required some form of collaboration was obvious as well: standard
software and network systems were needed; standard markets were needed;
standard norms of innovation within the constraints of standards were needed. In
short, the challenge was not just the creation of competitive products but the creation
of a standard infrastructure, dealing with the technical questions of availability,
modifiability, and reusability of components, and the moral questions of the proper
organization of competition and collaboration across diverse domains: engineers,
academics, the computer industry, and the industries it computerized. What follows
is the story of how UNIX entered the open-systems fray, a story in which the tension
between the conceiving of openness and the demands of intellectual property is
revealed.

163McKenna, Whos Afraid of Big Blue? 178, emphasis added. McKenna goes on to suggest that computer
companies can differentiate themselves by adding services, better interfaces, or higher
reliabilityironically similar to arguments that the Open Source Initiative would make ten years later.
164Richard Stallman, echoing the image of medieval manacled wretches, characterized the blind spot
thus: ”Unix does not give the user any more legal freedom than Windows does. What they mean by
open systems is that you can mix and match components, so you can decide to have, say, a Sun chain
on your right leg and some other companys chain on your left leg, and maybe some third companys
chain on your right arm, and this is supposed to be better than having to choose to have Sun chains on
all your limbs, or Microsoft chains on all your limbs. You know, I dont care whose chains are on each limb.
What I want is not to be chained by anyone” (”Richard Stallman: High School Misfit, Symbol of Free
Software, MacArthur-certified Genius,” interview by Michael Gross, Cambridge, Mass., 1999, 5,
⌜ http://www.mgross.com/MoreThgsChng/interviews/stallman1.html ⌟).

Two Bits Christopher M. Kelty 121

http://www.mgross.com/MoreThgsChng/interviews/stallman1.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Open Systems One: Operating Systems 443

In 1980 UNIX was by all accounts the most obvious choice for a standard operating 444

system for a reason that seemed simple at the outset: it ran on more than one kind of
hardware. It had been installed on DEC machines and IBM machines and Intel
processors and Motorola processorsa fact exciting to many professional programmers,
university computer scientists, and system administrators, many of whom also
considered UNIX to be the best designed of the available operating systems.
There was a problem, however (there always is): UNIX belonged to AT&T, and AT&T 445

had licensed it to multiple manufacturers over the years, in addition to allowing the
source code to circulate more or less with abandon throughout the world and to be
ported to a wide variety of different machine architectures. Such proliferation, albeit
haphazard, was a dream come true: a single, interoperable operating system running
on all kinds of hardware. Unfortunately, proliferation would also undo that dream,
because it meant that as the markets for workstations and operating systems heated
up, the existing versions of UNIX hardened into distinct and incompatible versions
with different features and interfaces. By the mid 1980s, there were multiple
competing efforts to standardize UNIX, an endeavour that eventually went haywire,
resulting in the so-called UNIX wars, in which ”gangs” of vendors (some on both sides
of the battle) teamed up to promote competing standards. The story of how this
happened is instructive, for it is a story that has been reiterated several times in the
computer industry.165

As a hybrid commercial-academic system, UNIX never entered the market as a single 446

thing. It was licensed in various ways to different people, both academic and
commercial, and contained additions and tools and other features that may or may
not have originated at (or been returned to) Bell Labs. By the early 1980s, the
Berkeley Software Distribution was in fact competing with the AT&T version, even
though BSD was a sublicenseeand it was not the only one. By the late 1970s and
early 1980s, a number of corporations had licensed UNIX from AT&T for use on new
machines. Microsoft licensed it (and called it Xenix, rather than licensing the name
UNIX as well) to be installed on Intel-based machines. IBM, Unisys, Amdahl, Sun, DEC,
and Hewlett-Packard all followed suit and [pg154] created their own versions and names:
HP-UX, A/UX, AIX, Ultrix, and so on. Given the ground rules of trade secrecy and
intellectual property, each of these licensed versions needed to be made legally
distinctif they were to compete with each other. Even if ”UNIX” remained
conceptually pure in an academic or pedagogical sense, every manufacturer would
nonetheless have to tweak, to extend, to optimize in order to differentiate. After all,
”if companies do nothing but adhere to standards, then all computers will become
commodities, and nobody will be able to make any money.”166

It was thus unlikely that any of these corporations would contribute the changes they 447

165A similar story can be told about the emergence, in the late 1960s and early 1970s, of manufacturers
of ”plug-compatible” devices, peripherals that plugged into IBM machines (see Takahashi, ”The Rise and
Fall of the Plug Compatible Manufacturers”). Similarly, in the 1990s the story of browser compatibility
and the World Wide Web Consortium (W3C) standards is another recapitulation.
166McKenna, Whos Afraid of Big Blue? 178.

Two Bits Christopher M. Kelty 122

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

made to UNIX back into a common pool, and certainly not back to AT&T which
subsequent to the 1984 divestiture finally released their own commercial version of
UNIX, called UNIX System V. Very quickly, the promising ”open” UNIX of the 1970s
became a slough of alternative operating systems, each incompatible with the next
thanks to the addition of market-differentiating features and hardware-specific
tweaks. According to Pamela Gray, ”By the mid-1980s, there were more than 100
versions in active use” centered around the three market leaders, AT&Ts System V,
Microsoft/SCO Xenix, and the BSD.167 By 1984, the differences in systems had
become significantas in the case of the BSD additions of the TCP/IP protocols, the vi
editor, and the Pascal compilerand created not only differentiation in terms of quality
but also incompatibility at both the software and networking levels.
Different systems of course had different user communities, based on who was the 448

customer of whom. Eric Raymond suggests that in the mid-1980s, independent
hackers, programmers, and computer scientists largely followed the fortunes of BSD:
”The divide was roughly between longhairs and shorthairs; programmers and
technical people tended to line up with Berkeley and BSD, more business-oriented
types with AT&T and System V. The longhairs, repeating a theme from Unixs early
days ten years before, liked to see themselves as rebels against a corporate empire;
one of the small companies put out a poster showing an X-wing-like space fighter
marked ”BSD” speeding away from a huge AT&T death star logo left broken and in
flames.”168

So even though UNIX had become the standard operating system of choice for 449

time-sharing, multi-user, high-performance computers by the mid-1980s, there was
no such thing as UNIX. Competitors [pg155] in the UNIX market could hardly expect the
owner of the system, AT&T, to standardize it and compete with them at the same
time, and the rest of the systems were in some legal sense still derivations from the
original AT&T system. Indeed, in its licensing pamphlets, AT&T even insisted that
UNIX was not a noun, but an adjective, as in ”the UNIX system.”169

The dawning realization that the proliferation of systems was not only spreading UNIX 450

around the world but also spreading it thin and breaking it apart led to a series of
increasingly startling and high-profile attempts to ”standardize” UNIX. Given that the
three major branches (BSD, which would become the industry darling as Suns Solaris
operating system; Microsoft, and later SCO Xenix; and AT&Ts System V) all emerged
from the same AT&T and Berkeley work done largely by Thompson, Ritchie, and Joy,
one would think that standardization would be a snap. It was anything but.

Figuring Out Goes Haywire 451

Figuring out the moral and technical order of open systems went haywire around 452

1986-88, when there were no fewer than four competing international standards,
167Pamela Gray, Open Systems.
168Eric Raymond, ”Origins and History of Unix, 1969-1995,” The Art of UNIX Programming,
⌜ http://www.faqs.org/docs/artu/ch02s01.html#id2880014 ⌟ .
169Libes and Ressler, Life with UNIX, 22. Also noted in Tanenbaum, ”The UNIX Marketplace in 1987,” 419.

Two Bits Christopher M. Kelty 123

http://www.faqs.org/docs/artu/ch02s01.html##id2880014
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

represented by huge consortia of computer manufacturers (many of whom belonged
to multiple consortia): POSIX, the X/Open consortium, the Open Software Foundation,
and UNIX International. The blind spot of open systems had much to do with this
crazy outcome: academics, industry, and government could not find ways to agree on
standardization. One goal of standardization was to afford customers choice; another
was to allow competition unconstrained by ”artificial” means. A standard body of
source code was impossible; a standard ”interface definition” was open to too much
interpretation; government and academic standards were too complex and
expensive; no particular corporations standard could be trusted (because they could
not be trusted to reveal it in advance of their own innovations); and worst of all,
customers kept buying, and vendors kept shipping, and the world was increasingly
filled with diversity, not standardization.
UNIX proliferated quickly because of porting, leading to multiple instances of an 453

operating system with substantially similar source code shared by academics and
licensed by AT&T. But it differentiated [pg156] just as quickly because of forking, as
particular features were added to different ports. Some features were reincorporated
into the ”main” branchthe one Thompson and Ritchie worked onbut the bulk of these
mutations spread in a haphazard way, shared through users directly or implemented
in newly formed commercial versions. Some features were just that, features, but
others could extend the system in ways that might make an application possible on
one version, but not on another.
The proliferation and differentiation of UNIX, the operating system, had peculiar 454

effects on the emerging market for UNIX, the product: technical issues entailed
design and organizational issues. The original UNIX looked the way it did because of
the very peculiar structure of the organization that created and sustained UNIX: Bell
Labs and the worldwide community of users and developers. The newly formed
competitors, conceiving of UNIX as a product distinct from the original UNIX, adopted
it precisely because of its portability and because of the promise of open systems as
an alternative to ”big iron” mainframes. But as UNIX was funneled into existing
corporations with their own design and organizational structures, it started to become
incompatible with itself, and the desire for competition in open systems necessitated
efforts at UNIX standardization.
The first step in the standardization of open systems and UNIX was the creation of 455

what was called an ”interface definition,” a standard that enumerated the minimum
set of functions that any version of UNIX should support at the interface level,
meaning that any programmer who wrote an application could expect to interact with
any version of UNIX on any machine in the same way and get the same response
from the machine (regardless of the specific implementation of the operating system
or the source code that was used). Interface definitions, and extensions to them,
were ideally to be published and freely available.
The interface definition was a standard that emphasized portability, not at the 456

source-code or operating-system level, but at the application level, allowing
applications built on any version of UNIX to be installed and run on any other. The
push for such a standard came first from a UNIX user group founded in 1980 by Bob

Two Bits Christopher M. Kelty 124

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Marsh and called, after the convention of file hierarchies in the UNIX interface,
”/usr/group” (later renamed Uniforum). The 1984 /usr/group standard defined a set of
system calls, which, however, ”was [pg157] immediately ignored and, for all practical
purposes, useless.”170 It seemed the field was changing too fast and UNIX
proliferating and innovating too widely for such a standard to work.
The /usr/group standard nevertheless provided a starting point for more traditional 457

standards organizationsthe Institute of Electrical and Electronics Engineers (IEEE) and
the American National Standards Institute (ANSI)to take on the task. Both institutions
took the /usr/group standard as a basis for what would be called IEEE P1003 Portable
Operating System Interface for Computer Environments (POSIX). Over the next three
years, from 1984 to 1987, POSIX would work diligently at providing a standard
interface definition for UNIX.
Alongside this development, the AT&T version of UNIX became the basis for a different 458

standard, the System V Interface Definition (SVID), which attempted to standardize a
set of functions similar but not identical to the /usr/group and POSIX standards. Thus
emerged two competing definitions for a standard interface to a system that was
rapidly proliferating into hundreds of tiny operating-system fiefdoms.171 The danger
of AT&T setting the standard was not lost on any of the competing manufacturers.
Even if they created a thoroughly open standard-interface definition, AT&Ts version of
UNIX would be the first to implement it, and they would continually have privileged
knowledge of any changes: if they sought to change the implementation, they could
change the standard; if they received demands that the standard be changed, they
could change their implementation before releasing the new standard.
In response to this threat, a third entrant into the standards race emerged: X/Open, 459

which comprised a variety of European computer manufacturers (including AT&T!)
and sought to develop a standard that encompassed both SVID and POSIX. The
X/Open initiative grew out of European concern about the dominance of IBM and
originally included Bull, Ericsson, ICL, Nixdorf, Olivetti, Philips, and Siemens. In
keeping with a certain 1980s taste for the integration of European economic activity
vis-à-vis the United States and Japan, these manufacturers banded together both to
distribute a unified UNIX operating system in Europe (based initially on the BSD and
Sun versions of UNIX) and to attempt to standardize it at the same time.
X/Open represented a subtle transformation of standardization efforts and of the 460

organizational definition of open systems. While [pg158] the /usr/group standard was
developed by individuals who used UNIX, and the POSIX standard by an
acknowledged professional society (IEEE), the X/Open group was a collective of
computer corporations that had banded together to fund an independent entity to
help further the cause of a standard UNIX. This paradoxical situationof a need to
share a standard among all the competitors and the need to keep the details of that

170Libes and Ressler, Life with UNIX, 67.
171A case might be made that a third definition, the ANSI standard for the C programming language, also
covered similar ground, which of course it would have had to in order to allow applications written on
one [pg330] operating system to be compiled and run on another (see Gray, Open Systems, 55-58; Libes
and Ressler, Life with UNIX, 70-75).

Two Bits Christopher M. Kelty 125

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

standardized product secret to maintain an advantagewas one that many
manufacturers, especially the Europeans with their long experience of IBMs
monopoly, understood as mutually destructive. Hence, the solution was to engage in
a kind of organizational innovation, to create a new form of metacorporate structure
that could strategically position itself as at least temporarily interested in
collaboration with other firms, rather than in competition. Thus did stories and
promises of open systems wend their way from the details of technical design to
those of organizational design to the moral order of competition and collaboration,
power and strategy. ”Standards” became products that corporations sought to ”sell”
to their own industry through the intermediary of the consortium.
In 1985 and 1986 the disarrayed state of UNIX was also frustrating to the major U.S. 461

manufacturers, especially to Sun Microsystems, which had been founded on the
creation of a market for UNIX-based ”workstations,” high-powered networked
computers that could compete with mainframes and personal computers at the same
time. Founded by Bill Joy, Vinod Khosla, and Andreas Bechtolsheim, Sun had very
quickly become an extraordinarily successful computer company. The business pages
and magazines were keen to understand whether workstations were viable
competitors to PCs, in particular to those of IBM and Microsoft, and the de facto
standard DOS operating system, for which a variety of extremely successful
business-, personal-, and home-computer applications were written.
Sun seized on the anxiety around open systems, as is evident in the ad it ran during 462

the summer of 1987 (figure 4). The ad plays subtly on two anxieties: the first is
directed at the consumer and suggests that only with Sun can one actually achieve
interoperability among all of one business computers, much less across a network or
industry; the second is more subtle and plays to fears within the computer industry
itself, the anxiety that Sun might merge with one [pg159] of the big corporations, AT&T
or Unisys, and corner the market in open systems by producing the de facto
standard.
2bits_05_04-100.png,w619h376 [* 4a and 4b. Open systems anxiety around 463

mergers and compatibility. Sun Microsystems advertisement, Wall Street Journal, 9
July 1987.]
In fact, in October 1987 Sun announced that it had made a deal with AT&T. AT&T 464

would distribute a workstation based on Suns SPARC line of workstations and would
acquire 20 percent of Sun.172 As part of this announcement, Sun and AT&T made
clear that they intended to merge two of the dominant versions of UNIX on the
market: AT&Ts System V and the BSD-derived Solaris. This move clearly frightened
the rest of the manufacturers interested in UNIX and open systems, as it suggested a
kind of super-power alignment that would restructure (and potentially dominate) the
market. A 1988 article in the New York Times quotes an industry analyst who
characterizes the merger as ”a matter of concern at the highest levels of every major
computer company in the United States, and possibly the world,” and it suggests that
competing manufacturers ”also fear that AT&T will gradually make Unix a proprietary

172”AT&T Deal with Sun Seen,” New York Times, 19 October 1987, D8.

Two Bits Christopher M. Kelty 126

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

product, usable only on AT&T or Sun machines.”173 The industry anxiety was great
enough that in March Unisys (a computer manufacturer, formerly Burroughs-Sperry)
announced that it would work with AT&T and Sun to bring UNIX to its mainframes and
to make its [pg160] business applications run on UNIX. Such a move was tantamount to
Unisys admitting that there would be no future in proprietary high-end computingthe
business on which it had hitherto built its reputationunless it could be part of the
consortium that could own the standard.174

In response to this perceived collusion a group of U.S. and European companies 465

banded together to form another rival organizationone that partially overlapped with
X/Open but now included IBMthis one called the Open Software Foundation. A
nonprofit corporation, the foundation included IBM, Digital Equipment,
Hewlett-Packard, Bull, Nixdorf, Siemens, and Apollo Computer (Suns most direct
competitor in the workstation market). Their goal was explicitly to create a
”competing standard” for UNIX that would be available on the hardware they
manufactured (and based, according to some newspaper reports, on IBMs AIX, which
was to be called OSF/1). AT&T appeared at first to support the foundation, suggesting
that if the Open Software Foundation could come up with a standard, then AT&T
would make System V compatible with it. Thus, 1988 was the summer of open love.
Every major computer manufacturer in the world was now part of some consortium or
another, and some were part of twoeach promoting a separate standard.
Of all the corporations, Sun did the most to brand itself as the originator of the 466

open-systems concept. They made very broad claims for the success of
open-systems standardization, as for instance in an ad from August 1988 (figure 5),
which stated in part:

But whats more, those sales confirm a broad acceptance of the whole idea behind 467

Sun.
The Open Systems idea. Systems based on standards so universally accepted 468

that they allow combinations of hardware and software from literally thousands of
independent vendors. . . . So for the first time, youre no longer locked into the
company who made your computers. Even if its us.

The ad goes on to suggest that ”in a free market, the best products win out,” even as 469

Sun played both sides of every standardization battle, cooperating with both AT&T
and with the Open Software Foundation. But by October of that year, it was clear to
Sun that [pg161] [pg162] the idea hadnt really become ”so universal” just yet. In that
month AT&T and Sun banded together with seventeen other manufacturers and
formed a rival consortium: Unix International, a coalition of the willing that would
back the AT&T UNIX System V version as the one true open standard. In a full-page
advertisement from Halloween of 1988 (figure 6), run simultaneously in the New York
Times, the Washington Post, and the Wall Street Journal, the rhetoric of achieved
success remained, but now instead of ”the Open Systems idea,” it was ”your demand

173Thomas C. Hayesdallas, ”AT&Ts Unix Is a Hit at Last, and Other Companies Are Wary,” New York
Times, 24 February 1988, D8.
174”Unisys Obtains Pacts for Unix Capabilities,” New York Times, 10 March 1988, D4.

Two Bits Christopher M. Kelty 127

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

for UNIX System V-based solutions that ushered in the era of open architecture.”
Instead of a standard for all open systems, it was a war of all against all, a war to
assure customers that they had made, not the right choice of hardware or software,
but the right choice of standard.
2bits_05_05-100.png,w631h846 [* It pays to be open: Suns version of profitable and 470

successful open systems. Sun Microsystems advertisement, New York Times, 2
August 1988.]
The proliferation of standards and standards consortia is often referred to as the UNIX 471

wars of the late 1980s, but the creation of such consortia did not indicate clearly
drawn lines. Another metaphor that seems to have been very popular in the press at
the time was that of ”gang” warfare (no doubt helped along by the creation of
another industry consortia informally called the Gang of Nine, which were involved in
a dispute over whether MicroChannel or EISA buses should be installed in PCs). The
idea of a number of companies forming gangs to fight with each other,
Bloods-and-Crips styleor perhaps more Jets-and-Sharks style, minus the singingwas
no doubt an appealing metaphor at the height of Los Angeless very real and
high-profile gang warfare. But as one article in the New York Times pointed out, these
were strange gangs: ”Since openness and cooperation are the buzzwords behind
these alliances, the gang often asks its enemy to join. Often the enemy does so,
either so that it will not seem to be opposed to openness or to keep tabs on the group.
IBM was invited to join the corporation for Open Systems, even though the clear if
unstated motive of the group was to dilute IBMs influence in the market. AT&T
negotiated to join the Open Software Foundation, but the talks collapsed recently.
Some companies find it completely consistent to be members of rival gangs. . . .
About 10 companies are members of both the Open Software Foundation and its
archrival Unix International.”175

2bits_05_06-100.png,w620h917 [* The UNIX Wars, Halloween 1988. UNIX 472

International advertisement, Wall Street Journal and New York Times, 31 October
1988.]
The proliferation of these consortia can be understood in various ways. One could 473

argue that they emerged at a timeduring the Reagan administrationwhen antitrust
policing had diminished to [pg163] [pg164] the point where computer corporations did not
see such collusion as a risky activity vis-à-vis antitrust policing. One could also argue
that these consortia represented a recognition that the focus on hardware control
(the meaning of proprietary) had been replaced with a focus on the control of the
”open standard” by one or several manufacturers, that is, that competition was no
longer based on superior products, but on ”owning the standard.” It is significant that
the industry consortia quickly overwhelmed national efforts, such as the IEEE POSIX
standard, in the media, an indication that no one was looking to government or
nonprofits, or to university professional societies, to settle the dispute by declaring a

175Andrew Pollack, ”Computer Gangs Stake Out Turf,” New York Times, 13 December 1988, D1. See also
Evelyn Richards, ”Computer Firms Get a Taste of Gang Warfare,” Washington Post, 11 December 1988,
K1; Brit Hume, ”IBM, Once the Bully on the Block, Faces a Tough New PC Gang,” Washington Post, 3
October 1988, E24.

Two Bits Christopher M. Kelty 128

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

standard, but rather to industry itself to hammer out a standard, de facto or
otherwise. Yet another way to understand the emergence of these consortia is as a
kind of mutual policing of the market, a kind of paranoid strategy of showing each
other just enough to make sure that no one would leapfrog ahead and kill the existing,
fragile competition.
What this proliferation of UNIX standards and consortia most clearly represents, 474

however, is the blind spot of open systems: the difficulty of having collaboration and
competition at the same time in the context of intellectual-property rules that
incompletely capture the specific and unusual characteristics of software. For
participants in this market, the structure of intellectual property was
unassailablewithout it, most participants assumed, innovation would cease and
incentives disappear. Despite the fact that secrecy haunted the industry, its
customers sought both openness and compatibility. These conflicting demands
proved irresolvable.

Denouement 475

Ironically, the UNIX wars ended not with the emergence of a winner, but with the 476

reassertion of proprietary computing: Microsoft Windows and Windows NT. Rather
than open systems emerging victorious, ushering in the era of seamless integration
of diverse components, the reverse occurred: Microsoft managed to grab a huge
share of computer markets, both desktop and high-performance, by leveraging its
brand, the ubiquity of DOS, and application-software developers dependence on the
”Wintel” monster (Windows plus Intel chips). Microsoft triumphed, largely for the
same reasons the open-systems dream failed: the legal structure of intellectual [pg165]

property favored a strong corporate monopoly on a single, branded product over a
weak array of ”open” and competing components. There was no large gain to
investors, or to corporations, from an industry of nice guys sharing the source code
and making the components work together. Microsoft, on the other hand, had
decided to do so internal to itself; it did not necessarily need to form consortia or
standardize its operating systems, if it could leverage its dominance in the market to
spread the operating system far and wide. It was, as standards observers like to say,
the triumph of de facto standardization over de jure. It was a return to the manacled
wretches of IBMs monopolybut with a new dungeon master.
The denouement of the UNIX standards story was swift: AT&T sold its UNIX System 477

Labs (including all of the original source and rights) to Novell in 1993, who sold it in
turn to SCO two years later. Novell sold (or transferred) the trademark name UNIX to
the X/Open group, which continued to fight for standardization, including a single
universal UNIX specification. In 1996 X/Open and the Open Software Foundation
merged to form the Open Group.176 The Open Group eventually joined forces with
IEEE to turn POSIX into a single UNIX specification in 2001. They continue to push the
original vision of open systems, though they carefully avoid using the name or
concept, referring instead to the trademarked mouthful ”Boundaryless Information
176”What Is Unix?” The Unix System, ⌜ http://www.unix.org/what_is_unix/history_timeline.html ⌟ .

Two Bits Christopher M. Kelty 129

http://www.unix.org/what_is_unix/history_timeline.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Flow” and employing an updated and newly inscrutable rhetoric: ”Boundaryless
Information Flow, a shorthand representation of access to integrated information to
support business process improvements represents a desired state of an enterprises
infrastructure and is specific to the business needs of the organization.”177

The Open Group, as well as many other participants in the history of open systems, 478

recognize the emergence of ”open source” as a return to the now one true path of
boundaryless information flow. Eric Raymond, of course, sees continuity and renewal
(not least of which in his own participation in the Open Source movement) and in his
Art of UNIX Programming says, ”The Open Source movement is building on this stable
foundation and is creating a resurgence of enthusiasm for the UNIX philosophy. In
many ways Open Source can be seen as the true delivery of Open Systems that will
ensure it continues to go from strength to strength.”178

This continuity, of course, deliberately disavows the centrality of the legal component, 479

just as Raymond and the Open Source [pg166] Initiative had in 1998. The distinction
between a robust market in UNIX operating systems and a standard UNIX-based
infrastructure on which other markets and other activities can take place still remains
unclear to even those closest to the money and machines. It does not yet exist, and
may well never come to.
The growth of Free Software in the 1980s and 1990s depended on openness as a 480

concept and component that was figured out during the UNIX wars. It was during
these wars that the Free Software Foundation (and other groups, in different ways)
began to recognize the centrality of the issue of intellectual property to the goal of
creating an infrastructure for the successful creation of open systems.179 The GNU
(GNUs Not Unix) project in particular, but also the X Windows system at MIT, the
Remote Procedure Call and Network File System (NFS) systems created by Sun, and
tools like sendmail and BIND were each in their own way experiments with alternative
licensing arrangements and were circulating widely on a variety of the UNIX versions
in the late 1980s. Thus, the experience of open systems, while technically a failure as
far as UNIX was concerned, was nonetheless a profound learning experience for an
entire generation of engineers, hackers, geeks, and entrepreneurs. Just as the UNIX
operating system had a pedagogic life of its own, inculcating itself into the minds of
engineers as the paradigm of an operating system, open systems had much the same
effect, realizing an inchoate philosophy of openness, interconnection, compatibility,
interoperabilityin short, availability and modifiabilitythat was in conflict with
intellectual-property structures as they existed. To put it in Freudian terms: the
neurosis of open systems wasnt cured, but the structure of its impossibility had
become much clearer to everyone. UNIX, the operating system, did not disappear at
allbut UNIX, the market, did.

177”About the Open Group,” The Open Group, ⌜ http://www.opengroup.org/overview/vision-mission.htm ⌟ .
178”What Is Unix?” The Unix System, ⌜ http://www.unix.org/what_is_unix/history_timeline.html ⌟ .
179Larry McVoy was an early voice, within Sun, arguing for solving the open-systems problem by turning
to Free Software. Larry McVoy, ”The Sourceware Operating System Proposal,” 9 November 1993,
⌜ http://www.bitmover.com/lm/papers/srcos.html ⌟ .

Two Bits Christopher M. Kelty 130

http://www.opengroup.org/overview/vision-mission.htm
http://www.unix.org/what_is_unix/history_timeline.html
http://www.bitmover.com/lm/papers/srcos.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Open Systems Two: Networks 481

The struggle to standardize UNIX as a platform for open systems was not the only 482

open-systems struggle; alongside the UNIX wars, another ”religious war” was raging.
The attempt to standardize networksin particular, protocols for the inter-networking
of multiple, diverse, and autonomous networks of computerswas also a key aspect of
the open-systems story of the 1980s.180 The war [pg167] between the TCP/IP and OSI
was also a story of failure and surprising success: the story of a successful standard
with international approval (the OSI protocols) eclipsed by the experimental,
military-funded TCP/IP, which exemplified an alternative and unusual standards
process. The moral-technical orders expressed by OSI and TCP/IP are, like that of
UNIX, on the border between government, university, and industry; they represent
conflicting social imaginaries in which power and legitimacy are organized differently
and, as a result, expressed differently in the technology.
OSI and TCP/IP started with different goals: OSI was intended to satisfy everyone, to 483

be the complete and comprehensive model against which all competing
implementations would be validated; TCP/IP, by contrast, emphasized the easy and
robust interconnection of diverse networks. TCP/IP is a protocol developed by
bootstrapping between standard and implementation, a mode exemplified by the
Requests for Comments system that developed alongside them as part of the Arpanet
project. OSI was a ”model” or reference standard developed by internationally
respected standards organizations.
In the mid-1980s OSI was en route to being adopted internationally, but by 1993 it 484

had been almost completely eclipsed by TCP/IP. The success of TCP/IP is significant for
three reasons: (1) availabilityTCP/IP was itself available via the network and
development open to anyone, whereas OSI was a bureaucratically confined and
expensive standard and participation was confined to state and corporate
representatives, organized through ISO in Geneva; (2) modifiabilityTCP/IP could be
copied from an existing implementation (such as the BSD version of UNIX) and
improved, whereas OSI was a complex standard that had few existing
implementations available to copy; and (3) serendipitynew uses that took advantage
of availability and modifiability sprouted, including the ”killer app” that was the World
Wide Web, which was built to function on existing TCP/IP-based networks, convincing
many manufacturers to implement that protocol instead of, or in addition to, OSI.
The success of TCP/IP over OSI was also significant because of the difference in the 485

standardization processes that it exemplified. The OSI standard (like all official
international standards) is conceived and published as an aid to industrial growth: it
was imagined according to the ground rules of intellectual property and as an attempt
to facilitate the expansion of markets in networking. [pg168] OSI would be a

180The distinction between a protocol, an implementation and a standard is important: Protocols are
descriptions of the precise terms by which two computers can communicate (i.e., a dictionary and a
handbook for communicating). An implementation is the creation of software that uses a protocol (i.e.,
actually does the communicating; thus two implementations using the same protocol should be able to
share data. A standard defines which protocol should be used by which computers, for what purposes. It
may or may not define the protocol, but will set limits on changes to that protocol.

Two Bits Christopher M. Kelty 131

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

”vendor-neutral” standard: vendors would create their own, secret implementations
that could be validated by OSI and thereby be expected to interoperate with other
OSI-validated systems. By stark contrast, the TCP/IP protocols were not published (in
any conventional sense), nor were the implementations validated by a legitimate
international-standards organization; instead, the protocols are themselves
represented by implementations that allow connection to the network itself (where
the TCP/IP protocols and implementations are themselves made available). The fact
that one can only join the network if one possesses or makes an implementation of
the protocol is generally seen as the ultimate in validation: it works.181 In this sense,
the struggle between TCP/IP and OSI is indicative of a very familiar twentieth-century
struggle over the role and extent of government planning and regulation (versus
entrepreneurial activity and individual freedom), perhaps best represented by the
twin figures of Friedrich Hayek and Maynard Keynes. In this story, it is Hayeks
aversion to planning and the subsequent privileging of spontaneous order that
eventually triumphs, not Keyness paternalistic view of the government as a neutral
body that absorbs or encourages the swings of the market.

Bootstrapping Networks 486

The ”religious war” between TCP/IP and OSI occurred in the context of intense 487

competition among computer manufacturers and during a period of vibrant
experimentation with computer networks worldwide. As with most developments in
computing, IBM was one of the first manufacturers to introduce a networking system
for its machines in the early 1970s: the System Network Architecture (SNA). DEC
followed suit with Digital Network Architecture (DECnet or DNA), as did Univac with
Distributed Communications Architecture (DCA), Burroughs with Burroughs Network
Architecture (BNA), and others. These architectures were, like the proprietary
operating systems of the same era, considered closed networks, networks that
interconnected a centrally planned and specified number of machines of the same
type or made by the same manufacturer. The goal of such networks was to make
connections internal to a firm, even if that involved geographically widespread
systems (e.g., from branch to headquarters). Networks were also to be products.
The 1970s and 1980s saw extraordinarily vibrant experimentation with academic, 488

military, and commercial networks. Robert Metcalfe had developed Ethernet at Xerox
PARC in the mid-1970s, and IBM later created a similar technology called ”token ring.”
In the 1980s the military discovered that the Arpanet was being used predominantly
by computer scientists and not just for military applications, and decided to break it
into MILNET and CSNET.182 Bulletin Board Services, which connected PCs to each
other via modems to download files, appeared in the late 1970s. Out of this grew Tom
Jenningss very successful experiment called FidoNet.183 In the 1980s an existing

181The advantages of such an unplanned and unpredictable network have come to be identified in
hindsight as a design principle. See Gillespie, ”Engineering a Principle” for an excellent analysis of the
history of ”end to end” or ”stupid” networks.
182William Broad, ”Global Network Split as Safeguard,” New York Times, 5 October 1983, A13.
183See the incomparable BBS: The Documentary, DVD, directed by Jason Scott (Boston: Bovine Ignition

Two Bits Christopher M. Kelty 132

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

social network of university faculty on the East Coast of the United States started a
relatively successful network called BITNET (Because Its There Network) in the
mid-1980s.184 The Unix to Unix Copy Protocol (uucp), which initially enabled the
Usenet, was developed in the late 1970s and widely used until the mid-1980s to
connect UNIX computers together. In 1984 the NSF began a program to fund research
in networking and created the first large backbones for NSFNet, successor to the
CSNET and Arpanet.185

In the 1970s telecommunications companies and spin-off start-ups experimented 489

widely with what were called ”videotex” systems, of which the most widely
implemented and well-known is Minitel in France.186 Such systems were designed for
consumer users and often provided many of the now widespread services available
on the Internet in a kind of embryonic form (from comparison shopping for cars, to
directory services, to pornography).187 By the late 1970s, videotex systems were in
the process of being standardized by the Commité Consultative de Information,
Technologie et Télécommunications (CCITT) at the International Telecommunications
Union (ITU) in Geneva. These standards efforts would eventually be combined with
work of the International Organization for Standardization (ISO) on OSI, which had
originated from work done at Honeywell.188

One important feature united almost all of these experiments: the networks of the 490

computer manufacturers were generally piggybacked, or bootstrapped, onto existing
telecommunications infrastructures built by state-run or regulated monopoly
telecommunications firms. This situation inevitably spelled grief, for
telecommunications providers are highly regulated entities, while the computer
industry has been almost totally unregulated from its [pg170] inception. Since an
increasingly core part of the computer industrys business involved transporting
signals through telecommunications systems without being regulated to do so, the
telecommunications industry naturally felt themselves at a disadvantage.189
Telecommunications companies were not slow to respond to the need for data
communications, but their ability to experiment with products and practices outside
the scope of telephony and telegraphy was often hindered by concerns about
antitrust and monopoly.190 The unregulated computer industry, by contrast, saw the
tentativeness of the telecommunications industry (or national PTTs) as either
bureaucratic inertia or desperate attempts to maintain control and power over
Systems, 2005), ⌜ http://www.bbsdocumentary.com/ ⌟ .
184Grier and Campbell, ”A Social History of Bitnet and Listserv 1985-1991.”
185On Usenet, see Hauben and Hauben, Netizens. See also Pfaffenberger, ”A Standing Wave in the Web
of Our Communications.”
186Schmidt and Werle, Coordinating Technology, chap. 7.
187See, for example, Martin, Viewdata and the Information Society.
188There is little information on the development of open systems; there is, however, a brief note from
William Stallings, author of perhaps the most widely used textbook on networking, at ”The Origins of
OSI,” ⌜ http://williamstallings.com/Extras/OSI.html ⌟ .
189Brock, The Second Information Revolution is a good introductory source for this conflict, at least in its
policy outlines. The Federal Communications Commission issued two decisions (known as ”Computer 1”
and ”Computer 2”) that attempted to deal with this conflict by trying to define what counted as voice
communication and what as data.
190Brock, The Second Information Revolution, chap. 10.

Two Bits Christopher M. Kelty 133

http://www.bbsdocumentary.com/
http://williamstallings.com/Extras/OSI.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

existing networksthough no computer manufacturer relished the idea of building their
own physical network when so many already existed.
TCP/IP and OSI have become emblematic of the split between the worlds of 491

telecommunications and computing; the metaphors of religious wars or of blood
feuds and cold wars were common.191 A particularly arch account from this period is
Carl Malamuds Exploring the Internet: A Technical Travelogue, which documents
Malamuds (physical) visits to Internet sites around the globe, discussions (and beer)
with networking researchers on technical details of the networks they have created,
and his own typically geeky, occasionally offensive takes on cultural difference.192 A
subtheme of the story is the religious war between Geneva (in particular the ITU) and
the Internet: Malamud tells the story of asking the ITU to release its 19,000-page
”blue book” of standards on the Internet, to facilitate its adoption and spread.
The resistance of the ITU and Malamuds heroic if quixotic attempts are a parable of 492

the moral-technical imaginaries of opennessand indeed, his story draws specifically
on the usable past of Giordano Bruno.193 The ”bruno” project demonstrates the gulf
that exists between two models of legitimacythose of ISO and the ITUin which
standards represent the legal and legitimate consensus of a regulated industry,
approved by member nations, paid for and enforced by governments, and
implemented and adhered to by corporations.
Opposite ISO is the ad hoc, experimental style of Arpanet and Internet researchers, in 493

which standards are freely available and implementations represent the mode of
achieving consensus, rather than the outcome of the consensus. In reality, such a
rhetorical [pg171] opposition is far from absolute: many ISO standards are used on the
Internet, and ISO remains a powerful, legitimate standards organization. But the clash
of established (telecommunications) and emergent (computer-networking) industries
is an important context for understanding the struggle between OSI and TCP/IP.
The need for standard networking protocols is unquestioned: interoperability is the 494

bread and butter of a network. Nonetheless, the goals of the OSI and the TCP/IP
protocols differed in important ways, with profound implications for the shape of that
interoperability. OSIs goals were completeness, control, and comprehensiveness. OSI
grew out of the telecommunications industry, which had a long history of confronting
the vicissitudes of linking up networks and facilitating communication around the
world, a problem that required a strong process of consensus and negotiation among
large, powerful, government-run entities, as well as among smaller manufacturers
and providers. OSIs feet were firmly planted in the international standardization
organizations like OSI and the ITU (an organization as old as telecommunications
itself, dating to the 1860s).
Even if they were oft-mocked as slow, bureaucratic, or cumbersome, the processes of 495

191Drake, ”The Internet Religious War.”
192Malamud, Exploring the Internet; see also Michael M. J. Fischer, ”Worlding Cyberspace.”
193The usable past of Giordano Bruno is invoked by Malamud to signal the heretical nature of his own
commitment to openly publishing standards that ISO was opposed to releasing. Brunos fate at the
hands of the Roman Inquisition hinged in some part on his acceptance of the Copernican cosmology, so
he has been, like Galileo, a natural figure for revolutionary claims during the 1990s.

Two Bits Christopher M. Kelty 134

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

ISO and ITUbased in consensus, international agreement, and thorough technical
specificationare processes of unquestioned legitimacy. The representatives of nations
and corporations who attend ISO and ITU standards discussions, and who design,
write, and vote on these standards, are usually not bureaucrats, but engineers and
managers directly concerned with the needs of their constituency. The
consensus-oriented process means that ISO and ITU standards attempt to satisfy all
members goals, and as such they tend to be very large, complex, and highly specific
documents. They are generally sold to corporations and others who need to use them,
rather than made freely available, a fact that until recently reflected their legitimacy,
rather than lack thereof.
TCP/IP, on the other hand, emerged from very different conditions.194 These protocols 496

were part of a Department of Defense-funded experimental research project: Arpanet.
The initial Arpanet protocols (the Network Control Protocol, or NCP) were insufficient,
and TCP/IP was an experiment in interconnecting two different ”packet-switched
networks”: the ground-line-based Arpanet network and a radio-wave network called
Packet Radio.195 The [pg172] problem facing the designers was not how to
accommodate everyone, but merely how to solve a specific problem: interconnecting
two technically diverse networks, each with autonomous administrative boundaries,
but forcing neither of them to give up the system or the autonomy.
Until the mid-1980s, the TCP/IP protocols were resolutely research-oriented, and not 497

the object of mainstream commercial interest. Their development reflected a core set
of goals shared by researchers and ultimately promoted by the central funding
agency, the Department of Defense. The TCP/IP protocols are often referred to as
enabling packet-switched networks, but this is only partially correct; the real
innovation of this set of protocols was a design for an ”inter-network,” a system that
would interconnect several diverse and autonomous networks (packet-switched or
circuit-switched), without requiring them to be transformed, redesigned, or
standardizedin short, by requiring only standardization of the intercommunication
between networks, not standardization of the network itself. In the first paper
describing the protocol Robert Kahn and Vint Cerf motivated the need for TCP/IP thus:
”Even though many different and complex problems must be solved in the design of
an individual packet-switching network, these problems are manifestly compounded
when dissimilar networks are interconnected. Issues arise which may have no direct
counterpart in an individual network and which strongly influence the way in which
Internetwork communication can take place.”196

The explicit goal of TCP/IP was thus to share computer resources, not necessarily to 498

connect two individuals or firms together, or to create a competitive market in
networks or networking software. Sharing between different kinds of networks
implied allowing the different networks to develop autonomously (as their creators
194Abbate, Inventing the Internet; Salus, Casting the Net; Galloway, Protocol; and Brock, The Second
Information Revolution. For practitioner histories, see Kahn et al., ”The Evolution of the Internet as a
Global Information System”; Clark, ”The Design Philosophy of the DARPA Internet Protocols.”
195Kahn et al., ”The Evolution of the Internet as a Global Information System,” 134-140; Abbate,
Inventing the Internet, 114-36.
196Kahn and Cerf, ”A Protocol for Packet Network Intercommunication,” 637.

Two Bits Christopher M. Kelty 135

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and maintainers saw best), but without sacrificing the ability to continue sharing.
Years later, David Clark, chief Internet engineer for several years in the 1980s, gave a
much more explicit explanation of the goals that led to the TCP/IP protocols. In
particular, he suggested that the main overarching goal was not just to share
resources but ”to develop an effective technique for multiplexed utilization of existing
interconnected networks,” and he more explicitly stated the issue of control that
faced the designers: ”Networks represent administrative boundaries of control, and it
was an ambition of this project to come to grips with the problem of integrating a
number [pg173] of separately administrated entities into a common utility.”197 By
placing the goal of expandability first, the TCP/IP protocols were designed with a
specific kind of simplicity in mind: the test of the protocols success was simply the
ability to connect.
By setting different goals, TCP/IP and OSI thus differed in terms of technical details; 499

but they also differed in terms of their context and legitimacy, one being a product of
international-standards bodies, the other of military-funded research experiments.
The technical and organizational differences imply different processes for
standardization, and it is the peculiar nature of the so-called Requests for Comments
(RFC) process that gave TCP/IP one of its most distinctive features. The RFC system is
widely recognized as a unique and serendipitous outcome of the research process of
Arpanet.198 In a thirty-year retrospective (published, naturally, as an RFC: RFC 2555),
Vint Cerf says, ”Hiding in the history of the RFCs is the history of human institutions
for achieving cooperative work.” He goes on to describe their evolution over the
years: ”When the RFCs were first produced, they had an almost 19th century
character to themletters exchanged in public debating the merits of various design
choices for protocols in the ARPANET. As email and bulletin boards emerged from the
fertile fabric of the network, the far-flung participants in this historic dialog began to
make increasing use of the online medium to carry out the discussionreducing the
need for documenting the debate in the RFCs and, in some respects, leaving
historians somewhat impoverished in the process. RFCs slowly became conclusions
rather than debates.”199

Increasingly, they also became part of a system of discussion and implementation in 500

which participants created working software as part of an experiment in developing
the standard, after which there was more discussion, then perhaps more
implementation, and finally, a standard. The RFC process was a way to condense the
process of standardization and validation into implementation; which is to say, the
proof of open systems was in the successful connection of diverse networks, and the
creation of a standard became a kind of ex post facto rubber-stamping of this
demonstration. Any further improvement of the standard hinged on an improvement
on the standard implementation because the standards that resulted were freely and
widely available: ”A user could request an RFC by email from his host computer and
have it automatically delivered to his mailbox. . . . RFCs were also shared freely with
official standards [pg174] bodies, manufacturers and vendors, other working groups,
197Clark, ”The Design Philosophy of the DARPA Internet Protocols,” 54-55.
198RFCs are archived in many places, but the official site is RFC Editor, ⌜ http://www.rfc-editor.org/ ⌟ .
199RFC Editor, RFC 2555, 6.

Two Bits Christopher M. Kelty 136

http://www.rfc-editor.org/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and universities. None of the RFCs were ever restricted or classified. This was no
mean feat when you consider that they were being funded by DoD during the height
of the Cold War.”200

The OSI protocols were not nearly so freely available. The ironic reversalthe 501

transparency of a military-research program versus the opacity of a Geneva-based
international-standards organizationgoes a long way toward explaining the reasons
why geeks might find the story of TCP/IPs success to be so appealing. It is not that
geeks are secretly militaristic, but that they delight in such surprising reversals,
especially when those reversals exemplify the kind of ad hoc, clever solution to
problems of coordination that the RFC process does. The RFC process is not the only
alternative to a consensus-oriented model of standardization pioneered in the
international organizations of Geneva, but it is a specific response to a reorientation
of power and knowledge that was perhaps more ”intuitively obvious” to the creators
of Arpanet and the Internet, with its unusual design goals and context, than it would
have been to the purveyors of telecommunications systems with over a hundred
years of experience in connecting people in very specific and established ways.

Success as Failure 502

By 1985, OSI was an official standard, one with widespread acceptance by engineers, 503

by the government and military (the ”GOSIP” standard), and by a number of
manufacturers, the most significant of which was General Motors, with its
Manufacturing Automation Protocol (MAP). In textbooks and handbooks of the late
1980s and early 1990s, OSI was routinely referred to as the inevitable standardwhich
is to say, it had widespread legitimacy as the standard that everyone should be
implementingbut few implementations existed. Many of the textbooks on networking
from the late 1980s, especially those slanted toward a theoretical introduction, give
elaborate detail of the OSI reference modela generation of students in networking
was no doubt trained to understand the world in terms of OSIbut the ambivalence
continued. Indeed, the most enduring legacy of the creation of the OSI protocols is
not the protocols themselves (some of which, like ASN.1, are still [pg175] widely used
today), but the pedagogical model: the ”7 layer stack” that is as ubiquitous in
networking classes and textbooks as UNIX is in operating-systems classes.201

But in the late 1980s, the ambivalence turned to confusion. With OSI widely 504

recognized as the standard, TCP/IP began to show up in more and more actually
existing systems. For example, in Computer Network Architectures and Protocols, Carl
Sunshine says, ”Now in the late 1980s, much of the battling seems over. CCITT and
ISO have aligned their efforts, and the research community seems largely to have
resigned itself to OSI.” But immediately afterward he adds: ”It is ironic that while a
200Ibid., 11.
201This can be clearly seen, for instance, by comparing the various editions of the main
computer-networking textbooks: cf. Tanenbaum, Computer Networks, 1st ed. (1981), 2d ed. (1988), 3d
ed. (1996), and 4th ed. (2003); Stallings, Data and Computer Communications, 1st ed. (1985), 2d ed.
(1991), [pg332] 3d ed. (1994), 4th ed. (1997), and 5th ed. (2004); and Comer, Internetworking with TCP/IP
(four editions between 1991 and 1999).

Two Bits Christopher M. Kelty 137

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

consensus has developed that OSI is indeed inevitable, the TCP/IP protocol suite has
achieved widespread deployment, and now serves as a de facto interoperability
standard. . . . It appears that the vendors were unable to bring OSI products to
market quickly enough to satisfy the demand for interoperable systems, and TCP/IP
were there to fill the need.”202

The more implementations that appeared, the less secure the legitimate standard 505

seemed to be. By many accounts the OSI specifications were difficult to implement,
and the yearly networking-industry ”Interop” conferences became a regular locale for
the religious war between TCP/IP and OSI. The success of TCP/IP over OSI reflects the
reorientation of knowledge and power to which Free Software is also a response. The
reasons for the success are no doubt complex, but the significance of the success of
TCP/IP illustrates three issues: availability, modifiability, and serendipity.
Availability The TCP/IP standards themselves were free to anyone and available over 506

TCP/IP networks, exemplifying one of the aspects of a recursive public: that the only
test of participation in a TCP/IP-based internetwork is the fact that one possesses or
has created a device that implements TCP/IP. Access to the network is contingent on
the interoperability of the networks. The standards were not ”published” in a
conventional sense, but made available through the network itself, without any
explicit intellectual property restrictions, and without any fees or restrictions on who
could access them. By contrast, ISO standards are generally not circulated freely, but
sold for relatively high prices, as a source of revenue, and under the general theory
that only legitimate corporations or government agencies would need access to
them.
Related to the availability of the standards is the fact that the standards process that 507

governed TCP/IP was itself open to anyone, whether corporate, military or academic.
The structure of governance of the Internet Engineering Task Force (the IETF) and the
Internet Society (ISOC) allowed for anyone with the means available to attend the
”working group” meetings that would decide on the standards that would be
approved. Certainly this does not mean that the engineers and defense contractors
responsible actively sought out corporate stakeholders or imagined the system to be
”public” in any dramatic fashion; however, compared to the system in place at most
standards bodies (in which members are usually required to be the representatives of
corporations or governments), the IETF allowed individuals to participate qua
individuals.203

Modifiability Implementations of TCP/IP were widely available, bootstrapped from 508

machine to machine along with the UNIX operating system and other tools (e.g., the
implementation of TCP/IP in BSD 4.2, the BSD version of UNIX), generally including
the source code. An existing implementation is a much more expressive and usable
object than a specification for an implementation, and though ISO generally prepares
reference implementations for such standards, in the case of OSI there were many
fewer implementations to work with or build on. Because multiple implementations of
202Sunshine, Computer Network Architectures and Protocols, 5.
203The structure of the IETF, the Internet Architecture Board, and the ISOC is detailed in Comer,
Internetworking with TCP/IP, 8-13; also in Schmidt and Werle, Coordinating Technology, 53-58.

Two Bits Christopher M. Kelty 138

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

TCP/IP already existed, it was easy to validate: did your (modified) implementation
work with the other existing implementations? By contrast, OSI would provide
independent validation, but the in situ validation through connection to other OSI
networks was much harder to achieve, there being too few of them, or access being
restricted. It is far easier to build on an existing implementation and to improve on it
piecemeal, or even to rewrite it completely, using its faults as a template (so to
speak), than it is to create an implementation based solely on a standard. The
existence of the TCP/IP protocols in BSD 4.2 not only meant that people who installed
that operating system could connect to the Internet easily, at a time when it was by
no means standard to be able to do so, but it also meant that manufacturers or
tinkerers could examine the implementation in BSD 4.2 as the basis for a modified, or
entirely new, implementation.
Serendipity Perhaps most significant, the appearance of widespread and popular 509

applications that were dependent on TCP/IP [pg177] gave those protocols an inertia that
OSI, with relatively few such applications, did not have. The most important of these
by far was the World Wide Web (the http protocol, the HTML mark-up language, and
implementations of both servers, such as libwww, and clients, such as Mosaic and
Netscape). The basic components of the Web were made to work on top of the TCP/IP
networks, like other services that had already been designed (ftp, telnet, gopher,
archie, etc.); thus, Tim Berners-Lee, who co-invented the World Wide Web, could also
rely on the availability and openness of previous work for his own protocols. In
addition, Berners-Lee and CERN (the European Organization for Nuclear Research)
dedicated their work to the public domain more or less immediately, essentially
allowing anyone to do anything they wished with the system they had cobbled
together.204 From the perspective of the tension between TCP/IP and OSI, the World
Wide Web was thus what engineers call a ”killer app,” because its existence actually
drove individuals and corporations to make decisions (in favor of TCP/IP) that it might
not have made otherwise.

Conclusion 510

Openness and open systems are key to understanding the practices of Free Software: 511

the open-systems battles of the 1980s set the context for Free Software, leaving in
their wake a partially articulated infrastructure of operating systems, networks, and
markets that resulted from figuring out open systems. The failure to create a standard
UNIX operating system opened the door for Microsoft Windows NT, but it also set the
stage for the emergence of the Linux-operating-system kernel to emerge and spread.
The success of the TCP/IP protocols forced multiple competing networking schemes
into a single standardand a singular entity, the Internetwhich carried with it a set of
built-in goals that mirror the moral-technical order of Free Software.
This ”infrastructure” is at once technical (protocols and standards and 512

implementations) and moral (expressing ideas about the proper order and

204Message-ID:
⌜673c43e160cia758@sluvca.slu.edu. ⌟ See also Berners-Lee, Weaving the Web.

Two Bits Christopher M. Kelty 139

http://groups.google.com/groups?selm=673c43e160cia758@sluvca.slu.edu
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

organization of commercial efforts to provide high-tech software, networks, and
computing power). As with the invention of UNIX, the opposition
commercial-noncommercial (or its doppelgangers public-private, profit-nonprofit,
capitalist-socialist, etc.) [pg178] doesnt capture the context. Constraints on the ability
to collaborate, compete, or withdraw are in the making here through the technical
and moral imaginations of the actors involved: from the corporate behemoths like
IBM to (onetime) startups like Sun to the independent academics and amateurs and
geeks with stakes in the new high-tech world of networks and software.
The creation of a UNIX market failed. The creation of a legitimate international 513

networking standard failed. But they were local failures only. They opened the doors
to new forms of commercial practice (exemplified by Netscape and the dotcom boom)
and new kinds of politicotechnical fractiousness (ICANN, IPv6, and ”net neutrality”).
But the blind spot of open systemsintellectual propertyat the heart of these failures
also provided the impetus for some geeks, entrepreneurs, and lawyers to start
figuring out the legal and economic aspects of Free Software, and it initiated a vibrant
experimentation with copyright licensing and with forms of innovative coordination
and collaboration built on top of the rapidly spreading protocols of the Internet.

Two Bits Christopher M. Kelty 140

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

6.Writing Copyright Licenses 514

To protect your rights, we need to make restrictions that forbid anyone to deny 515

you these rights or to ask you to surrender the rights. - Preamble to the GNU
General Public License

The use of novel, unconventional copyright licenses is, without a doubt, the most 516

widely recognized and exquisitely refined component of Free Software. The GNU
General Public License (GPL), written initially by Richard Stallman, is often referred to
as a beautiful, clever, powerful ”hack” of intellectual-property lawwhen it isnt being
denounced as a viral, infectious object threatening the very fabric of economy and
society. The very fact that something so boring, so arcane, and so legalistic as a
copyright license can become an object of both devotional reverence and bilious
scorn means there is much more than fine print at stake. [pg180]

By the beginning of the twenty-first century, there were hundreds of different Free 517

Software licenses, each with subtle legal and technical differences, and an enormous
legal literature to explain their details, motivation, and impact.205 Free Software
licenses differ from conventional copyright licenses on software because they usually
restrict only the terms of distribution, while so-called End User License Agreements
(EULAs) that accompany most proprietary software restrict what users can do with the
software. Ethnographically speaking, licenses show up everywhere in the field, and
contemporary hackers are some of the most legally sophisticated non-lawyers in the
world. Indeed, apprenticeship in the world of hacking is now impossible, as Gabriella
Coleman has shown, without a long, deep study of intellectual-property law.206

But how did it come to be this way? As with the example of sharing UNIX source code, 518

Free Software licenses are often explained as a reaction to expanding
intellectual-property laws and resistance to rapacious corporations. The text of the
GPL itself begins deep in such assumptions: ”The licenses for most software are
designed to take away your freedom to share and change it.”207 But even if
corporations are rapacious, sharing and modifying software are by no means natural
human activities. The ideas of sharing and of common property and its relation to
freedom must always be produced through specific practices of sharing, before being
defended. The GPL is a precise example of how geeks fit together the practices of
sharing and modifying software with the moral and technical ordersthe social
imaginariesof freedom and autonomy. It is at once an exquisitely precise legal
document and the expression of an idea of how software should be made available,
shareable, and modifiable.
In this chapter I tell the story of the creation of the GPL, the first Free Software license, 519

during a controversy over EMACS, a very widely used and respected piece of
software; the controversy concerned the reuse of bits of copyrighted source code in a

205The legal literature on Free Software expands constantly and quickly, and it addresses a variety of
different legal issues. Two excellent starting points are Vetter, ”The Collaborative Integrity of
Open-Source Software” and ”Infectious Open Source Software.”
206Coleman, ”The Social Construction of Freedom.”
207”The GNU General Public Licence, Version 2.0,” ⌜ http://www.gnu.org/licenses/old-licenses/gpl-2.0.html ⌟ .

Two Bits Christopher M. Kelty 141

http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

version of EMACS ported to UNIX. There are two reasons to retell this story carefully.
The first is simply to articulate the details of the origin of the Free Software license
itself, as a central component of Free Software, details that should be understood in
the context of changing copyright law and the UNIX and open-systems struggles of
the 1980s. Second, although the story of the GPL is also an oft-told story of the
”hacker ethic,” the GPL is not an ”expression” of this [pg181] ethic, as if the ethic were
genotype to a legal phenotype. Opposite the familiar story of ethics, I explain how the
GPL was ”figured out” in the controversy over EMACS, how it was formed in response
to a complicated state of affairs, both legal and technical, and in a medium new to all
the participants: the online mailing lists and discussion lists of Usenet and
Arpanet.208

The story of the creation of the GNU General Public License ultimately affirms the 520

hacker ethic, not as a story of the ethical hacker genius, but as a historically specific
event with a duration and a context, as something that emerges in response to the
reorientation of knowledge and power, and through the active modulation of existing
practices among both human and nonhuman actors. While hackers themselves might
understand the hacker ethic as an unchanging set of moral norms, their practices
belie this belief and demonstrate how ethics and norms can emerge suddenly and
sharply, undergo repeated transformations, and bifurcate into ideologically distinct
camps (Free Software vs. Open Source), even as the practices remain stable relative
to them. The hacker ethic does not descend from the heights of philosophy like the
categorical imperativehackers have no Kant, nor do they want one. Rather, as Manuel
Delanda has suggested, the philosophy of Free Software is the fact of Free Software
itself, its practices and its things. If there is a hacker ethic, it is Free Software itself, it
is the recursive public itself, which is much more than a list of norms.209 By
understanding it in this way, it becomes possible to track the proliferation and
differentiation of the hacker ethic into new and surprising realms, instead of assuming
its static universal persistence as a mere procedure that hackers execute.

Free Software Licenses, Once More with Feeling 521

In lecturing on liberalism in 1935, John Dewey said the following of Jeremy Bentham: 522

208All existing accounts of the hacker ethic come from two sources: from Stallman himself and from the
colorful and compelling chapter about Stallman in Steven Levys Hackers. Both acknowledge a prehistory
to the ethic. Levy draws it back in time to the MIT Tech Model Railroad Club of the 1950s, while Stallman
is more likely to describe it as reaching back to the scientific revolution or earlier. The stories of early
hackerdom at MIT are avowedly Edenic, and in them hackers live in a world of uncontested freedom and
collegial competitionsomething like a writers commune without the alcohol or the brawling. There are
stories about a printer whose software needed fixing but was only available under a nondisclosure
agreement; about a requirement to use passwords (Stallman refused, chose <return> as his password,
and hacked the system to encourage others to do the same); about a programming war between
different LISP machines; and about the replacement of the Incompatible Time-Sharing System with DECs
TOPS-20 (”Twenex”) operating system. These stories are oft-told usable pasts, but they are not
representative. Commercial constraints have always been part of academic life in computer science and
engineering: hardware and software were of necessity purchased from commercial manufacturers and
often controlled by them, even if they offered ”academic” or ”educational” licenses.
209Delanda, ”Open Source.”

Two Bits Christopher M. Kelty 142

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

”He was, we might say, the first great muck-raker in the field of law . . . but he was
more than that, whenever he saw a defect, he proposed a remedy. He was an
inventor in law and administration, as much so as any contemporary in mechanical
production.”210 Deweys point was that the liberal reforms attributed to Bentham
came not so much from his theories as from his direct involvement in administrative
and legal reformhis experimentation. [pg182] Whether or not Benthams influence is
best understood this way, it nonetheless captures an important component of liberal
reform in Europe and America that is also a key component in the story of Free
Software: that the route to achieving change is through direct experiment with the
system of law and administration.
A similar story might be told of Richard Stallman, hacker hero and founder of the Free 523

Software Foundation, creator of (among many other things) the GNU C Compiler and
GNU EMACS, two of the most widely used and tested Free Software tools in the world.
Stallman is routinely abused for holding what many perceive to be ”dogmatic” or
”intractable” ideological positions about freedom and the right of individuals to do
what they please with software. While it is no doubt quite true that his speeches and
writings clearly betray a certain fervor and fanaticism, it would be a mistake to
assume that his speeches, ideas, or belligerent demands concerning word choice
constitute the real substance of his reform. In fact, it is the software he has created
and the licenses he has written and rewritten which are the key to his Bentham-like
inventiveness. Unlike Bentham, however, Stallman is not a creator of law and
administrative structure, but a hacker.
Stallmans GNU General Public License ”hacks” the federal copyright law, as is often 524

pointed out. It does this by taking advantage of the very strong rights granted by
federal law to actually loosen the restrictions normally associated with ownership.
Because the statutes grant owners strong powers to create restrictions, Stallmans
GPL contains the restriction that anybody can use the licensed material, for any
purpose, so long as they subsequently offer the same restriction. Hacks (after which
hackers are named) are clever solutions to problems or shortcomings in technology.
Hacks are work-arounds, clever, shortest-path solutions that take advantage of
characteristics of the system that may or may not have been obvious to the people
who designed it. Hacks range from purely utilitarian to mischievously pointless, but
they always depend on an existing system or tool through which they achieve their
point. To call Free Software a hack is to point out that it would be nothing without the
existence of intellectual-property law: it relies on the structure of U.S. copyright law
(USCğ17) in order to subvert it. Free Software licenses are, in a sense, immanent to
copyright lawsthere is nothing illegal or even legally arcane about what they
accomplishbut there is nonetheless a kind of lingering sense [pg183] that this particular
use of copyright was not how the law was intended to function.
Like all software since the 1980 copyright amendments, Free Software is 525

copyrightableand whats more, automatically copyrighted as it is written (there is no
longer any requirement to register). Copyright law grants the author (or the employer
of the author) a number of strong rights over the dispensation of what has been

210Dewey, Liberalism and Social Action.

Two Bits Christopher M. Kelty 143

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

written: rights to copy, distribute, and change the work.211 Free Softwares hack is to
immediately make use of these rights in order to abrogate the rights the programmer
has been given, thus granting all subsequent licensees rights to copy, distribute,
modify, and use the copyrighted software. Some licenses, like the GPL, add the
further restriction that every licensee must offer the same terms to any subsequent
licensee, others make no such restriction on subsequent uses. Thus, while statutory
law suggests that individuals need strong rights and grants them, Free Software
licenses effectively annul them in favor of other activities, such as sharing, porting,
and forking software. It is for this reason that they have earned the name
”copyleft.”212

This is a convenient ex post facto description, however. Neither Stallman nor anyone 526

else started out with the intention of hacking copyright law. The hack of the Free
Software licenses was a response to a complicated controversy over a very important
invention, a tool that in turn enabled an invention called EMACS. The story of the
controversy is well-known among hackers and geeks, but not often told, and not in
any rich detail, outside of these small circles.213

EMACS, the Extensible, Customizable, Self-documenting, Real-time 527

Display Editor

EMACS is a text editor; it is also something like a religion. As one of the two most 528

famous text editors, it is frequently lauded by its devoted users and attacked by
detractors who prefer its competitor (Bill Joys vi, also created in the late 1970s).
EMACS is more than just a tool for writing text; for many programmers, it was (and
still is) the principal interface to the operating system. For instance, it allows a
programmer not only to write a program but also to debug it, to compile it, to run it,
and to e-mail it to another user, [pg184] all from within the same interface. Whats more,
it allows users to quickly and easily write extensions to EMACS itself, extensions that
automate frequent tasks and in turn become core features of the software. It can do
almost anything, but it can also frustrate almost anyone. The name itself is taken
from its much admired extensibility: EMACS stands for ”editing macros” because it
allows programmers to quickly record a series of commands and bundle them into a
macro that can be called with a simple key combination. In fact, it was one of the first
211Copyright Act of 1976, Pub. L. No. 94-553, 90 Stat. 2541, enacted 19 October 1976; and Copyright
Amendments, Pub. L. No. 96-517, 94 Stat. 3015, 3028 (amending ğ101 and ğ117, title 17, United States
Code, regarding computer programs), enacted 12 December 1980. All amendments since 1976 are
listed at ⌜ http://www.copyright.gov/title17/92preface.html ⌟ .
212The history of the copyright and software is discussed in Litman, Digital Copyright; Cohen et al.,
Copyright in a Global Information Economy; and Merges, Menell, and Lemley, Intellectual Property in the
New Technological Age.
213See Wayner, Free for All; Moody, Rebel Code; and Williams, Free as in Freedom. Although this story
could be told simply by interviewing Stallman and James Gosling, both of whom are still alive and active
in the software world, I have chosen to tell it through a detailed analysis of the Usenet and Arpanet
archives of the controversy. The trade-off is between a kind of incomplete, fly-on-the-wall access to a
moment in history and the likely revisionist retellings of those who lived through it. All of the messages
referenced here are cited by their ”Message-ID,” which should allow anyone interested to access the
original messages through Google Groups (⌜ http://groups.google.com ⌟).

Two Bits Christopher M. Kelty 144

http://www.copyright.gov/title17/92preface.html
http://groups.google.com
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

editors (if not the first) to take advantage of keys like ctrl and meta, as in the now
ubiquitous ctrl-S familiar to users of non-free word processors like Microsoft
Word.
Appreciate the innovation represented by EMACS: before the UNIX-dominated 529

minicomputer era, there were very few programs for directly manipulating text on a
display. To conceive of source code as independent of a program running on a
machine meant first conceiving of it as typed, printed, or hand-scrawled code which
programmers would scrutinize in its more tangible, paper-based form. Editors that
allowed programmers to display the code in front of them on a screen, to manipulate
it directly, and to save changes to those files were an innovation of the mid- to late
1960s and were not widespread until the mid-1970s (and this only for bleeding-edge
academics and computer corporations). Along with a few early editors, such as QED
(originally created by Butler Lampson and Peter Deutsch, and rewritten for UNIX by
Ken Thompson), one of the most famous of these was TECO (text editor and corrector),
written by Dan Murphy for DECs PDP-1 computer in 1962-63. Over the years, TECO
was transformed (ported and extended) to a wide variety of machines, including
machines at Berkeley and MIT, and to other DEC hardware and operating systems. By
the early 1970s, there was a version of TECO running on the Incompatible
Time-sharing System (ITS), the system in use at MITs Artificial Intelligence (AI) Lab,
and it formed the basis for EMACS. (Thus, EMACS was itself conceived of as a series of
macros for a separate editor: Editing MACroS for TECO.)
Like all projects on ITS at the AI Lab, many people contributed to the extension and 530

maintenance of EMACS (including Guy Steele, Dave Moon, Richard Greenblatt, and
Charles Frankston), but there is a clear recognition that Stallman made it what it was.
The earliest AI Lab memo on EMACS, by Eugene Ciccarelli, says: ”Finally, of all the
people who have contributed to the development of EMACS, [pg185] and the TECO
behind it, special mention and appreciation go to Richard M. Stallman. He not only
gave TECO the power and generality it has, but brought together the good ideas of
many different Teco-function packages, added a tremendous amount of new ideas
and environment, and created EMACS. Personally one of the joys of my avocational
life has been writing Teco/EMACS functions; what makes this fun and not painful is the
rich set of tools to work with, all but a few of which have an RMS chiseled somewhere
on them.”214

At this point, in 1978, EMACS lived largely on ITS, but its reputation soon spread, and 531

it was ported to DECs TOPS-20 (Twenex) operating system and rewritten for Multics
and the MITs LISP machine, on which it was called EINE (Eine Is Not EMACS), and
which was followed by ZWEI (Zwei Was Eine Initially).
The proliferation of EMACS was both pleasing and frustrating to Stallman, since it 532

meant that the work fragmented into different projects, each of them EMACS-like,
rather than building on one core project, and in a 1981 report he said, ”The
proliferation of such superficial facsimiles of EMACS has an unfortunate confusing
effect: their users, not knowing that they are using an imitation of EMACS and never
214Eugene Ciccarelli, ”An Introduction to the EMACS Editor,” MIT Artificial Intelligence Laboratory, AI Lab
Memo no. 447, 1978, 2.

Two Bits Christopher M. Kelty 145

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

having seen EMACS itself, are led to believe they are enjoying all the advantages of
EMACS. Since any real-time display editor is a tremendous improvement over what
they probably had before, they believe this readily. To prevent such confusion, we
urge everyone to refer to a nonextensible imitation of EMACS as an ersatz EMACS.
”215

Thus, while EMACS in its specific form on ITS was a creation of Stallman, the idea of 533

EMACS or of any ”real-time display editor” was proliferating in different forms and on
different machines. The porting of EMACS, like the porting of UNIX, was facilitated by
both its conceptual design integrity and its widespread availability.
The phrase ”nonextensible imitation” captures the combination of design philosophy 534

and moral philosophy that EMACS represented. Extensibility was not just a useful
feature for the individual computer user; it was a way to make the improvements of
each new user easily available equally to all by providing a standard way for users to
add extensions and to learn how to use new extensions that were added (the
”self-documenting” feature of the system). The program had a conceptual integrity
that was compromised when it was copied imperfectly. EMACS has a modular,
extensible design [pg186] that by its very nature invites users to contribute to it, to
extend it, and to make it perform all manner of tasksto literally copy and modify it,
instead of imitating it. For Stallman, this was not only a fantastic design for a text
editor, but an expression of the way he had always done things in the small-scale
setting of the AI Lab. The story of Stallmans moral commitments stresses his
resistance to secrecy in software production, and EMACS is, both in its design and in
Stallmans distribution of it an example of this resistance.
Not everyone shared Stallmans sense of communal order, however. In order to 535

facilitate the extension of EMACS through sharing, Stallman started something he
called the ”EMACS commune.” At the end of the 1981 report”EMACS: The Extensible,
Customizable Self-documenting Display Editor,” dated 26 Marchhe explained the
terms of distribution for EMACS: ”It is distributed on a basis of communal sharing,
which means that all improvements must be given back to me to be incorporated and
distributed. Those who are interested should contact me. Further information about
how EMACS works is available in the same way.”216

In another report, intended as a users manual for EMACS, Stallman gave more 536

detailed and slightly more colorful instructions:
EMACS does not cost anything; instead, you are joining the EMACS 537

software-sharing commune. The conditions of membership are that you must
send back any improvements you make to EMACS, including any libraries you
write, and that you must not redistribute the system except exactly as you got it,
complete. (You can also distribute your customizations, separately.) Please do not

215Richard Stallman, ”EMACS: The Extensible, Customizable Self-documenting Display Editor,” MIT
Artificial Intelligence Laboratory, AI Lab Memo no. 519a, 26 March 1981, 19. Also published as Richard
M. Stallman, ”EMACS: The Extensible, Customizable Self-documenting Display Editor,” Proceedings of
the ACM SIGPLAN SIGOA Symposium on Text Manipulation, 8-10 June (ACM, 1981), 147-56.
216Richard Stallman, ”EMACS: The Extensible, Customizable Self-documenting Display Editor,” MIT
Artificial Intelligence Laboratory, AI Lab Memo no. 519a, 26 March 1981, 24.

Two Bits Christopher M. Kelty 146

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

attempt to get a copy of EMACS, for yourself or anyone else, by dumping it off of
your local system. It is almost certain to be incomplete or inconsistent. It is
pathetic to hear from sites that received incomplete copies lacking the sources
[source code], asking me years later whether sources are available. (All sources
are distributed, and should be on line at every site so that users can read them
and copy code from them). If you wish to give away a copy of EMACS, copy a
distribution tape from MIT, or mail me a tape and get a new one.217

Because EMACS was so widely admired and respected, Stallman had a certain 538

amount of power over this commune. If it had been an obscure, nonextensible tool,
useful for a single purpose, no one would have heeded such demands, but because
EMACS was by nature the kind of tool that was both useful for all kinds of tasks and
[pg187] customizable for specific ones, Stallman was not the only person who benefited
from this communal arrangement. Two disparate sites may well have needed the
same macro extension, and therefore many could easily see the social benefit in
returning extensions for inclusion, as well as in becoming a kind of co-developer of
such a powerful system. As a result, the demands of the EMACS commune, while
unusual and autocratic, were of obvious value to the flock. In terms of the concept of
recursive public, EMACS was itself the tool through which it was possible for users to
extend EMACS, the medium of their affinity; users had a natural incentive to share
their contributions so that all might receive the maximum benefit.
The terms of the EMACS distribution agreement were not quite legally binding; 539

nothing compelled participation except Stallmans reputation, his hectoring, or a users
desire to reciprocate. On the one hand, Stallman had not yet chosen to, or been
forced to, understand the details of the legal system, and so the EMACS commune
was the next best thing. On the other hand, the state of intellectual-property law was
in great flux at the time, and it was not clear to anyone, whether corporate or
academic, exactly what kind of legal arrangements would be legitimate (the 1976
changes to copyright law were some of the most drastic in seventy years, and a 1980
amendment made software copyrightable, but no court cases had yet tested these
changes). Stallmans ”agreement” was a set of informal rules that expressed the
general sense of mutual aid that was a feature of both the design of the system and
Stallmans own experience at the AI Lab. It was an expression of the way Stallman
expected others to behave, and his attempts to punish or shame people amounted to
informal enforcement of these expectations. The small scale of the community
worked in Stallmans favor.
At its small scale, Stallmans commune was confronting many of the same issues that 540

haunted the open-systems debates emerging at the same time, issues of
interoperability, source-code sharing, standardization, portability, and forking. In
particular, Stallman was acutely aware of the blind spot of open systems: the conflict
of moral-technical orders represented by intellectual property. While UNIX vendors
left intellectual-property rules unchallenged and simply assumed that they were the
essential ground rules of debate, Stallman made them the substance of his

217Richard M. Stallman, ”EMACS Manual for ITS Users,” MIT Artificial Intelligence Laboratory, AI Lab
Memo no. 554, 22 October 1981, 163.

Two Bits Christopher M. Kelty 147

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

experiment and, like Bentham, became something of a legal muckraker as a
result.
Stallmans communal model could not completely prevent the porting and forking of 541

software. Despite Stallmans request that imitators refer to their versions of EMACS as
ersatz EMACS, few did. In the absence of legal threats over a trademarked term there
was not much to stop people from calling their ports and forks EMACS, a problem of
success not unlike that of Kleenex or Xerox. Few people took the core ideas of EMACS,
implemented them in an imitation, and then called it something else (EINE and ZWEI
were exceptions). In the case of UNIX the proliferation of forked versions of the
software did not render them any less UNIX, even when AT&T insisted on ownership
of the trademarked name. But as time went on, EMACS was ported, forked, rewritten,
copied, or imitated on different operating systems and different computer
architectures in universities and corporations around the world; within five or six
years, many versions of EMACS were in wide use. It was this situation of successful
adoption that would provide the context for the controversy that occurred between
1983 and 1985.

The Controversy 542

In brief the controversy was this: in 1983 James Gosling decided to sell his version of 543

EMACSa version written in C for UNIX called GOSMACSto a commercial software
vendor called Unipress. GOSMACS, the second most famous implementation of
EMACS (after Stallmans itself), was written when Gosling was a graduate student at
Carnegie Mellon University. For years, Gosling had distributed GOSMACS by himself
and had run a mailing list on Usenet, on which he answered queries and discussed
extensions. Gosling had explicitly asked people not to redistribute the program, but to
come back to him (or send interested parties to him directly) for new versions, making
GOSMACS more of a benevolent dictatorship than a commune. Gosling maintained
his authority, but graciously accepted revisions and bug-fixes and extensions from
users, incorporating them into new releases. Stallmans system, by contrast, allowed
users to distribute their extensions themselves, as well as have them included in the
”official” EMACS. By 1983, Gosling had decided he was unable to effectively maintain
and support GOSMACSa task he considered the proper role of a corporation.
For Stallman, Goslings decision to sell GOSMACS to Unipress was ”software sabotage.” 544

Even though Gosling had been substantially responsible for writing GOSMACS,
Stallman felt somewhat proprietorial toward this ersatz versionor, at the very least,
was irked that no noncommercial UNIX version of EMACS existed. So Stallman wrote
one himself (as part of a project he announced around the same time, called GNU
[GNUs Not UNIX], to create a complete non-AT&T version of UNIX). He called his
version GNU EMACS and released it under the same EMACS commune terms. The
crux of the debate hinged on the fact that Stallman used, albeit ostensibly with
permission, a small piece of Goslings code in his new version of EMACS, a fact that led
numerous people, including the new commercial suppliers of EMACS, to cry foul.
Recriminations and legal threats ensued and the controversy was eventually resolved

Two Bits Christopher M. Kelty 148

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

when Stallman rewrote the offending code, thus creating an entirely ”Gosling-free”
version that went on to become the standard UNIX version of EMACS.
The story raises several questions with respect to the changing legal context. In 545

particular, it raises questions about the difference between ”law on the books” and
”law in action,” that is, the difference between the actions of hackers and commercial
entities, advised by lawyers and legally minded friends, and the text and
interpretation of statutes as they are written by legislators and interpreted by courts
and lawyers. The legal issues span trade secret, patent, and trademark, but copyright
is especially significant. Three issues were undecided at the time: the copyrightability
of software, the definition of what counts as software and what doesnt, and the
meaning of copyright infringement. While the controversy did not resolve any of
these issues (the first two would be resolved by Congress and the courts, the third
remains somewhat murky), it did clarify the legal issues for Stallman sufficiently that
he could leave behind the informal EMACS commune and create the first version of a
Free Software license, the GNU General Public License, which first started appearing
in 1985.
Goslings decision to sell GOSMACS, announced in April of 1983, played into a growing 546

EMACS debate being carried out on the GOSMACS mailing list, a Usenet group called
net.emacs. Since net.emacs was forwarded to the Arpanet via a gateway maintained
by John Gilmore at Sun Microsystems, a fairly large community [pg190] of EMACS users
were privy to Goslings announcement. Prior to his declaration, there had been quite a
bit of discussion regarding different versions of EMACS, including an already
”commercial” version called CCA EMACS, written by Steve Zimmerman, of Computer
Corporation of America (CCA).218 Some readers wanted comparisons between CCA
EMACS and GOSMACS; others objected that it was improper to discuss a commercial
version on the list: was such activity legitimate, or should it be carried out as part of
the commercial companys support activities? Goslings announcement was therefore
a surprise, since it was already perceived to be the ”noncommercial” version.
Date: Tue Apr 12 04:51:12 1983 547

Subject: EMACS goes commercial
The version of EMACS that I wrote is now available commercially through a company called Unipress. .

. . They will be doing development, maintenance and will be producing a real manual. EMACS will be
available on many machines (it already runs on VAXen under Unix and VMS, SUNs, codatas, and
Microsoft Xenix). Along with this, I regret to say that I will no longer be distributing it.
This is a hard step to take, but I feel that it is necessary. I can no longer look after it properly, there are

too many demands on my time. EMACS has grown to be completely unmanageable. Its popularity has

218Back in January of 1983, Steve Zimmerman had announced that the company he worked for, CCA,
had created a commercial version of EMACS called CCA EMACS (Message-ID:
⌜385@yetti.uucp ⌟). Zimmerman had not written this version entirely, but had taken a version written
by Warren Montgomery at Bell Labs (written for UNIX on PDP-11s) and created the version that was
being used by programmers at CCA. Zimmerman had apparently distributed it by ftp at first, but when
CCA determined that it might be worth something, they decided to exploit it commercially, rather than
letting Zimmerman distribute it ”freely.” By Zimmermans own [pg334] account, this whole procedure
required ensuring that there was nothing left of the original code by Warren Montgomery that Bell Labs
owned (Message-ID:
⌜730@masscomp.uucp ⌟).

Two Bits Christopher M. Kelty 149

http://groups.google.com/groups?selm=385@yetti.uucp
http://groups.google.com/groups?selm=730@masscomp.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

made it impossible to distribute free: just the task of writing tapes and stuffing them into envelopes is
more than I can handle.
The alternative of abandoning it to the public domain is unacceptable. Too many other programs have

been destroyed that way.
Please support these folks. The effort that they can afford to put into looking after EMACS is directly

related to the support they get. Their prices are reasonable.
James.219

The message is worth paying careful attention to: Goslings work of distributing the 548

tapes had become ”unmanageable,” and the work of maintenance, upkeep, and
porting (making it available on multiple architectures) is something he clearly
believes should be done by a commercial enterprise. Gosling, it is clear, did not
understand his effort in creating and maintaining EMACS to have emerged from a
communal sharing of bits of codeeven if he had done a Sisyphean amount of work to
incorporate all the changes and suggestions his users had madebut he did long have
a commitment [pg191] to distributing it for free, a commitment that resulted in many
people contributing bits and pieces to GOSMACS.
”Free,” however, did not mean ”public domain,” as is clear from his statement that 549

”abandoning it” to the public domain would destroy the program. The distinction is an
important one that was, and continues to be, lost on many sophisticated members of
net.emacs. Here, free means without charge, but Gosling had no intention of letting
that word suggest that he was not the author, owner, maintainer, distributor, and sole
beneficiary of whatever value GOSMACS had. Public domain, by contrast, implied
giving up all these rights.220 His decision to sell GOSMACS to Unipress was a decision
to transfer these rights to a company that would then charge for all the labor he had
previously provided for no charge (for ”free”). Such a distinction was not clear to
everyone; many people considered the fact that GOSMACS was free to imply that it
was in the public domain.221 Not least of these was Richard Stallman, who referred to
Goslings act as ”software sabotage” and urged people to avoid using the
”semi-ersatz” Unipress version.222

To Stallman, the advancing commercialization of EMACS, both by CCA and by 550

Unipress, was a frustrating state of affairs. The commercialization of CCA had been of
little concern so long as GOSMACS remained free, but with Goslings announcement,
there was no longer a UNIX version of EMACS available. To Stallman, however, ”free”
meant something more than either ”public domain” or ”for no cost.” The EMACS
commune was designed to keep EMACS alive and growing as well as to provide it for
219Message-ID for Gosling:
⌜bnews.sri-arpa.865. ⌟
220The thread starting at Message-ID:
⌜969@sdcsvax.uucp ⌟ contains one example of a discussion over the difference between public-domain
and commercial software.
221In particular, a thread discussing this in detail starts at Message-ID:
⌜172@encore.uucp ⌟ and includes Message-ID:
⌜137@osu-eddie.UUCP ⌟ , Message-ID:
⌜1127@godot.uucp ⌟ , Message-ID:
⌜148@osu-eddie.uucp ⌟ .
222Message-ID: bnews.sri-arpa.988.

Two Bits Christopher M. Kelty 150

http://groups.google.com/groups?selm=bnews.sri-arpa.865
http://groups.google.com/groups?selm=969@sdcsvax.uucp
http://groups.google.com/groups?selm=172@encore.uucp
http://groups.google.com/groups?selm=137@osu-eddie.UUCP
http://groups.google.com/groups?selm=1127@godot.uucp
http://groups.google.com/groups?selm=148@osu-eddie.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

freeit was an image of community stewardship, a community that had included
Gosling until April 1983.
The disappearance of a UNIX version of EMACS, as well as the sudden commercial 551

interest in making UNIX into a marketable operating system, fed into Stallmans
nascent plan to create a completely new, noncommercial, non-AT&T UNIX operating
system that he would give away free to anyone who could use it. He announced his
intention on 27 September 1983:223

Free Unix! Starting this Thanksgiving I am going to write a complete Unix-compatible software system 552

called GNU (for Gnus Not Unix), and give it away free to everyone who can use it. Contributions of time,
money, programs and equipment are greatly needed.

His justifications were simple. 553

Why I Must Write GNU I consider that the golden rule requires that if I like a program I must share it 554

with other people who like it. I cannot in good conscience sign a nondisclosure agreement or a software
license agreement. So that I can continue to use computers without violating my principles, I have
decided to put together a sufficient body of free software so that I will be able to get along without any
software that is not free.224

At that point, it is clear, there was no ”free software license.” There was the word free, 555

but not the term public domain. There was the ”golden rule,” and there was a
resistance to nondisclosure and license arrangements in general, but certainly no
articulated conception of copyleft of Free Software as a legally distinct entity. And yet
Stallman hardly intended to ”abandon it” to the public domain, as Gosling suggested.
Instead, Stallman likely intended to require the same EMACS commune rules to apply
to Free Software, rules that he would be able to control largely by overseeing (in a
nonlegal sense) who was sent or sold what and by demanding (in the form of
messages attached to the software) that any modifications or improvements come in
the form of donations. It was during the period 1983-85 that the EMACS commune
morphed into the GPL, as Stallman began adding copyrights and appending
messages that made explicit what people could do with the software.225

The GNU project initially received little attention, however; scattered messages to 556

net.unix-wizards over the course of 1983-84 periodically ask about the status and
how to contact them, often in the context of discussions of AT&T UNIX licensing
practices that were unfolding as UNIX was divested and began to market its own

223Message-ID:
⌜771@mit-eddie.uucp ⌟ , announced on net.unix-wizards and net.usoft.
224Message-ID:
⌜771@mit-eddie.uucp ⌟ .
225Various other people seem to have conceived of a similar scheme around the same time (if the
Usenet archives are any guide), including Guido Van Rossum (who would later become famous for the
creation of the Python scripting language). The following is from Message-ID: 5568@mcvax.uucp:
/* This software is copyright (c) Mathematical Centre, Amsterdam,
* 1983.
* Permission is granted to use and copy this software, but not for * profit,
* and provided that these same conditions are imposed on any person
* receiving or using the software.
*/

Two Bits Christopher M. Kelty 151

http://groups.google.com/groups?selm=771@mit-eddie.uucp
http://groups.google.com/groups?selm=771@mit-eddie.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

version of UNIX.226 Stallmans original plan for GNU was to start with the core
operating system, the kernel, but his extensive work on EMACS and the sudden need
for a free EMACS for UNIX led him to start with a UNIX version of EMACS. In 1984 and
into 1985, he and others began work on a UNIX version of GNU EMACS. The two
commercial versions of UNIX EMACS (CCA EMACS and Unipress EMACS) continued to
circulate and improve in parallel. DEC users meanwhile used the original free version
created by Stallman. And, as often happens, life went on: Zimmerman left CCA in
August [pg193] 1984, and Gosling moved to Sun, neither of them remaining closely
involved in the software they had created, but leaving the new owners to do so.
By March 1985, Stallman had a complete version (version 15) of GNU EMACS running 557

on the BSD 4.2 version of UNIX (the version Bill Joy had helped create and had taken
with him to form the core of Suns version of UNIX), running on DECs VAX computers.
Stallman announced this software in a characteristically flamboyant manner,
publishing in the computer programmers monthly magazine Dr. Dobbs an article
entitled ”The GNU Manifesto.”227

Stallmans announcement that a free version of UNIX EMACS was available caused 558

some concern among commercial distributors. The main such concern was that GNU
EMACS 15.34 contained code marked ”Copyright (c) James Gosling,” code used to
make EMACS display on screen.228 The ”discovery” (not so difficult, since Stallman
always distributed the source code along with the binary) that this code had been
reused by Stallman led to extensive discussion among EMACS users of issues such as
the mechanics of copyright, the nature of infringement, the definition of software, the
meaning of public domain, the difference between patent, copyright, and trade
secret, and the mechanics of permission and its grantingin short, a discussion that
would be repeatedly recapitulated in nearly every software and intellectual property
controversy in the future.
The story of the controversy reveals the structure of rumor on the Usenet to be a bit 559

like the childs game of Chinese Whispers, except that the translations are all archived.
GNU EMACS 15.34 was released in March 1985. Between March and early June there
was no mention of its legal status, but around June 3 messages on the subject began
to proliferate. The earliest mention of the issue appeared not on net.emacs, but on
fa.info-vaxa newsgroup devoted to discussions of VAX computer systems (”fa” stands
for ”from Arpanet”)and it included a dialogue, between Ron Natalie and Marty Sasaki,
labeled ”GNU EMACS: How Public Domain?”: ”FOO, dont expect that GNU EMACS is
really in the public domain. UNIPRESS seems rather annoyed that there are large
portions of it that are marked copyright James Gosling.”229 This message was

226For example, Message-ID:
⌜6818@brl-tgr.arpa ⌟ .
227Stallman, ”The GNU Manifesto.” Available at GNUs Not Unix!, ⌜ http://www.gnu.org/gnu/manifesto.html ⌟ .
228The main file of the controversy was called display.c. A version that was modified by Chris Torek
appears in net.sources, Message-ID:
⌜424@umcp-cs.uucp ⌟ . A separate example of a piece of code written by Gosling bears a note that
claims he had declared it public domain, but did not ”include the infamous Stallman anti-copyright
clause” (Message-ID:
⌜78@tove.uucp ⌟).
229Message-ID:

Two Bits Christopher M. Kelty 152

http://groups.google.com/groups?selm=6818@brl-tgr.arpa
http://www.gnu.org/gnu/manifesto.html
http://groups.google.com/groups?selm=424@umcp-cs.uucp
http://groups.google.com/groups?selm=78@tove.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

reprinted on 4 June 1985 on net.emacs, with the addendum: ”RMSs work is based on
a version of Gosling code that existed before Unipress got it. Gosling had put that
code into the public domain. Any [pg194] work taking off from the early Gosling code is
therefore also public domain.”230

The addendum was then followed by an extensive reply from Zimmerman, whose 560

CCA EMACS had been based on Warren Montgomerys Bell Labs EMACS but rewritten
to avoid reusing the code, which may account for why his understanding of the issue
seems to have been both deep and troubling for him.

This is completely contrary to Goslings public statements. Before he made his 561

arrangements with Unipress, Goslings policy was that he would send a free copy
of his EMACS to anyone who asked, but he did not (publicly, at least) give anyone
else permission to make copies. Once Unipress started selling Goslings EMACS,
Gosling stopped distributing free copies and still did not grant anyone else
permission to make them; instead, he suggested that people buy EMACS from
Unipress. All versions of Goslings EMACS distributed by him carry his copyright
notice, and therefore none of them are in the public domain. Removing copyright
notices without the authors permission is, of course, illegal. Now, a quick check of
my GNU EMACS sources shows that sure enough, a number of files have Goslings
copyright notice in them. What this all means is that unless RMS got written
permission from Gosling to distribute his code, all copies of GNU EMACS constitute
violations of the copyright law. All those people making such copies, including
those people who allow them to be copied off their machines, could each be liable
for large sums of money. I think that RMS had better tell us if he has Goslings
written permission to make these copies. If so, why has he not stated this earlier
(preferably in the distribution itself) and thereby cleared up a potentially major
point of confusion? If not, why has he gone ahead and made many, many people
liable for criminal prosecution by recommending that they distribute this code
without even warning them of their liability? (People who distribute this code
would be liable even if they claim that they didnt see Goslings notices; the fact
that the notices are there is sufficient. ”Ignorance of the law is no excuse.”)
Now, I have nothing against free software; its a free country and people can do 562

what they want. Its just that people who do distribute free software had better be
sure that they have the legal right to do so, or be prepared to face the
consequences. (Jun 9, 1985).231

Stallman replied the next day. [pg195] 563

Nobody has any reason to be afraid to use or distribute GNU EMACS. It is well 564

known that I do not believe any software is anyones property. However, for the
GNU project, I decided it was necessary to obey the law. I have refused to look at
code I did not have permission to distribute. About 5% of GNU EMACS is close to
(though quite a bit changed from) an old version of Gosling EMACS. I am

⌜7773@ucbvax.arpa. ⌟
230Message-ID:
⌜11400007@inmet.uucp ⌟ .
231Message-ID:
⌜717@masscomp.uucp ⌟ .

Two Bits Christopher M. Kelty 153

http://groups.google.com/groups?selm=7773@ucbvax.arpa
http://groups.google.com/groups?selm=11400007@inmet.uucp
http://groups.google.com/groups?selm=717@masscomp.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

distributing it for Fen Labalme, who received permission from Gosling to distribute
it. It is therefore legal for me to do so. To be scrupulously legal, I put statements
at the front of the files concerned, describing this situation.
I dont see anything I should warn people aboutexcept that Zimmerman is going to 565

try to browbeat them.232

Stallmans original defense for using Goslings code was that he had permission to do 566

so. According to him, Fen Labalme had received written permissionwhether to make
use of or to redistribute is not clearthe display code that was included in GNU EMACS
15.34. According to Stallman, versions of Labalmes version of Goslings version of
EMACS were in use in various places (including at Labalmes employer, Megatest), and
Stallman and Labalme considered this a legally defensible position.233

Over the next two weeks, a slew of messages attempted to pick apart and 567

understand the issues of copyright, ownership, distribution, and authorship. Gosling
wrote to clarify that GOSMACS had never been in the public domain, but that
”unfortunately, two moves have left my records in a shambles,” and he is therefore
silent on the question of whether he granted permission.234 Goslings claim could well
be strategic: giving permission, had he done so, might have angered Unipress, which
expected exclusive control over the version he had sold; by the same token, he may
well have approved of Stallmans re-creation, but not have wanted to affirm this in any
legally actionable way. Meanwhile, Zimmerman relayed an anonymous message
suggesting that some lawyers somewhere found the ”third hand redistribution”
argument was legally ”all wet.”235

Stallmans biggest concern was not so much the legality of his own actions as the 568

possibility that people would choose not to use the software because of legal threats
(even if such threats were issued only as rumors by former employees of companies
that distributed software they had written). Stallman wanted users not only [pg196] to
feel safe using his software but to adopt his view that software exists to be shared
and improved and that anything that hinders this is a loss for everyone, which
necessitates an EMACS commune.
Stallmans legal grounds for using Goslings code may or may not have been sound. 569

Zimmerman did his best throughout to explain in detail what kind of permission
Stallman and Labalme would have needed, drawing on his own experience with the
CCA lawyers and AT&T Bell Labs, all the while berating Stallman for not creating the
display code himself. Meanwhile, Unipress posted an official message that said,
”UniPress wants to inform the community that portions of the GNU EMACS program
are most definitely not public domain, and that use and/or distribution of the GNU

232Message-ID:
⌜4421@mit-eddie.uucp ⌟ .
233Message-ID:
⌜4486@mit-eddie.uucp ⌟ . Stallman also recounts this version of events in ”RMS Lecture at KTH
(Sweden),” 30 October 1986, ⌜ http://www.gnu.org/philosophy/stallman-kth.html ⌟ .
234Message-ID:
⌜2334@sun.uucp ⌟ .
235Message-ID:
⌜732@masscomp.uucp ⌟ .

Two Bits Christopher M. Kelty 154

http://groups.google.com/groups?selm=4421@mit-eddie.uucp
http://groups.google.com/groups?selm=4486@mit-eddie.uucp
http://www.gnu.org/philosophy/stallman-kth.html
http://groups.google.com/groups?selm=2334@sun.uucp
http://groups.google.com/groups?selm=732@masscomp.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

EMACS program is not necessarily proper.”236 The admittedly vague tone of the
message left most people wondering what that meantand whether Unipress intended
to sue anyone. Strategically speaking, the company may have wished to maintain
good will among hackers and readers of net.emacs, an audience likely composed of
many potential customers. Furthermore, if Gosling had given permission to Stallman,
then Unipress would themselves have been on uncertain legal ground, unable to
firmly and definitively threaten users of GNU EMACS with legal action. In either case,
the question of whether or not permission was needed was not in questiononly the
question of whether it had been granted.237

However, a more complicated legal issue also arose as a result, one concerning the 570

status of code contributed to Gosling by others. Fen Labalme wrote a message to
net.emacs, which, although it did not clarify the legal status of Goslings code
(Labalme was also unable to find his ”permission” from Gosling), did raise a related
issue: the fact that he and others had made significant contributions to GOSMACS,
which Gosling had incorporated into his version, then sold to Unipress without their
permission: ”As one of the others who helped to bring EMACS [GOSMACS] up to
speed, I was distressed when Jim sold the editor to UniPress. This seemed to be a
direct violation of the trust that I and others had placed in Jim as we sent him our
improvements, modifications, and bug fixes. I am especially bothered by the general
mercenary attitude surrounding EMACS which has taken over from the once proud
hacker ethicEMACS is a tool that can make all of our lives better. Lets help it to
grow!”238

Labalmes implication, though he may not even have realized this himself, is that 571

Gosling may have infringed on the rights of others in selling the code to Unipress, as
a separate message from Joaquim Martillo makes clear: ”The differences between
current version of Unipress EMACS and Gnu EMACS display.c (a 19 page module) is
about 80%. For all the modules which Fen LeBalme [sic] gave RMS permission to use,
the differences are similar. Unipress is not even using the disputed software anymore!
Now, these modules contain code people like Chris Torek and others contributed when
Goslings emacs was in the public domain. I must wonder whether these people would
have contributed had they known their freely-given code was going to become part of
someones product.”239

Indeed, the general irony of this complicated situation was certainly not as evident as 572

it might have been given the emotional tone of the debates: Stallman was using code
from Gosling based on permission Gosling had given to Labalme, but Labalme had

236Message-ID:
⌜103@unipress.uucp ⌟ .
237With the benefit of hindsight, the position that software could be in the public domain also seems
legally uncertain, given that the 1976 changes to USCğ17 abolished the requirement to register and, by
the same token, to render uncertain the status of code contributed to Gosling and incorporated into
GOSMACS.
238Message-ID:
⌜18@megatest ⌟ . Note here the use of ”once proud hacker ethic,” which seems to confirm the
perpetual feeling that the ethic has been compromised.
239Message-ID:
⌜287@mit-athena.uucp ⌟ .

Two Bits Christopher M. Kelty 155

http://groups.google.com/groups?selm=103@unipress.uucp
http://groups.google.com/groups?selm=18@megatest
http://groups.google.com/groups?selm=287@mit-athena.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

written code for Gosling which Gosling had commercialized without telling
Labalmeconceivably, but not likely, the same code. Furthermore, all of them were
creating software that had been originally conceived in large part by Stallman (but
based on ideas and work on TECO, an editor written twenty years before EMACS), who
was now busy rewriting the very software Gosling had rewritten for UNIX. The ”once
proud hacker ethic” that Labalme mentions would thus amount not so much to an
explicit belief in sharing so much as a fast-and-loose practice of making contributions
and fixes without documenting them, giving oral permission to use and reuse, and
”losing” records that may or may not have existedhardly a noble enterprise.
But by 27 June 1985, all of the legal discussion was rendered moot when Stallman 573

announced that he would completely rewrite the display code in EMACS.
I have decided to replace the Gosling code in GNU EMACS, even though I still 574

believe Fen and I have permission to distribute that code, in order to keep
peoples confidence in the GNU project.
I came to this decision when I found, this night, that I saw how to rewrite the parts 575

that had seemed hard. I expect to have the job done by the weekend.240

On 5 July, Stallman sent out a message that said: [pg198] 576

Celebrate our independence from Unipress! 577

EMACS version 16, 100% Gosling-free, is now being tested at several places. It 578

appears to work solidly on Vaxes, but some other machines have not been tested
yet.241

The fact that it only took one week to create the code is a testament to Stallmans 579

widely recognized skills in creating great softwareit doesnt appear to have indicated
any (legal) threat or urgency. Indeed, even though Unipress seems also to have been
concerned about their own reputation, and despite the implication made by Stallman
that they had forced this issue to happen, they took a month to respond. At that point,
the Unipress employee Mike Gallaher wrote to insist, somewhat after the fact, that
Unipress had no intention of suing anyoneas long as they were using the Gosling-free
EMACS version 16 and higher.

UniPress has no quarrel with the Gnu project. It bothers me that people seem to 580

think we are trying to hinder it. In fact, we hardly did or said much at all, except
to point out that the Gnumacs code had James Goslings copyright in it. We have
not done anything to keep anyone from using Gnumacs, nor do we intend to now
that it is ”Gosling-free” (version 16.56).
You can consider this to be an official statement from UniPress: There is nothing 581

in Gnumacs version 16.56 that could possibly cause UniPress to get upset. If you
were afraid to use Gnumacs because you thought we would hassle you, dont be,
on the basis of version 16.56.242

240Message-ID:
⌜4559@mit-eddie.uucp ⌟ .
241Message-ID:
⌜4605@mit-eddie.uucp ⌟ .
242Message-ID:
⌜104@unipress.uucp ⌟ .

Two Bits Christopher M. Kelty 156

http://groups.google.com/groups?selm=4559@mit-eddie.uucp
http://groups.google.com/groups?selm=4605@mit-eddie.uucp
http://groups.google.com/groups?selm=104@unipress.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Both Stallman and Unipress received various attacks and defenses from observers of 582

the controversy. Many people pointed out that Stallman should get credit for
”inventing” EMACS and that the issue of him infringing on his own invention was
therefore ironic. Others proclaimed the innocence and moral character of Unipress,
which, it was claimed, was providing more of a service (support for EMACS) than the
program itself.
Some readers interpreted the fact that Stallman had rewritten the display code, 583

whether under pressure from Unipress or not, as confirmation of the ideas expressed
in ”The GNU Manifesto,” namely, that commercial software stifles innovation.
According to this logic, precisely because Stallman was forced to rewrite the code,
rather than build on something that he himself assumed he had permission [pg199] to
do, there was no innovation, only fear-induced caution.243 On the other hand, latent
within this discussion is a deep sense of propriety about what people had created;
many people, not only Stallman and Gosling and Zimmerman, had contributed to
making EMACS what it was, and most had done so under the assumption, legally
correct or not, that it would not be taken away from them or, worse, that others might
profit by it.
Goslings sale of EMACS is thus of a different order from his participation in the 584

common stewardship of EMACS. The distinction between creating software and
maintaining it is a commercial fiction driven in large part by the structure of
intellectual property. It mirrors the experience of open systems. Maintaining software
can mean improving it, and improving it can mean incorporating the original work
and ideas of others. To do so by the rules of a changing intellectual-property structure
forces different choices than to do so according to an informal hacker ethic or an
experimental ”commune.” One programmers minor improvement is another
programmers original contribution.

The Context of Copyright 585

The EMACS controversy occurred in a period just after some of the largest changes to 586

U.S. intellectual-property law in seventy years. Two aspects of this context are worth
emphasizing: (1) practices and knowledge about the law change slowly and do not
immediately reflect the change in either the law or the strategies of actors; (2) U.S.
law creates a structural form of uncertainty in which the interplay between legislation
and case law is never entirely certain. In the former aspect, programmers who grew
up in the 1970s saw a commercial practice entirely dominated by trade secret and
patent protection, and very rarely by copyright; thus, the shift to widespread use of
copyright law (facilitated by the 1976 and 1980 changes to the law) to protect
software was a shift in thinking that only slowly dawned on many participants, even
the most legally astute, since it was a general shift in strategy as well as a statutory
change. In the latter aspect, the 1976 and 1980 changes to the copyright law

243Joaquim Martillo, Message-ID:
⌜287@mit-athena.uucpp ⌟ : ”Trying to forbid RMS from using discarded code so that he must spend
time to reinvent the wheel supports his contention that software hoarders are slowing down progress in
computer science.”

Two Bits Christopher M. Kelty 157

http://groups.google.com/groups?selm=287@mit-athena.uucpp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

contained a number of uncertainties that would take over a decade to be worked out
in case law, issues such as the copyrightability of software, the definition of software,
and the meaning [pg200] of infringement in software copyright, to say nothing of the
impact of the codification of fair use and the removal of the requirement to register
(issues that arguably went unnoticed until the turn of the millennium). Both aspects
set the stage for the EMACS controversy and Stallmans creation of the GPL.
Legally speaking, the EMACS controversy was about copyright, permission, and the 587

meanings of a public domain and the reuse of software (and, though never explicitly
mentioned, fair use). Software patenting and trade-secret law are not directly
concerned, but they nonetheless form a background to the controversy. Many of the
participants expressed a legal and conventional orthodoxy that software was not
patentable, that is, that algorithms, ideas, or fundamental equations fell outside the
scope of patent, even though the 1981 case Diamond v. Diehr is generally seen as
the first strong support by the courts for forcing the United States Patent and
Trademark Office to grant patents on software.244 Software, this orthodoxy went, was
better protected by trade-secret law (a state-by-state law, not a federal statute),
which provided protection for any intellectual property that an owner reasonably tried
to maintain as a secret. The trade-secret status of UNIX, for example, meant that all
the educational licensees who were given the source code of UNIX had agreed to
keep it secret, even though it was manifestly circulating the world over; one could
therefore run afoul of trade-secret rules if one looked at the source code (e.g., signed
a nondisclosure license or was shown the code by an employee) and then
implemented something similar.
By contrast, copyright law was rarely deployed in matters of software production. The 588

first copyright registration of software occurred in 1964, but the desirability of relying
on copyright over trade secret was uncertain well into the 1970s.245 Some
corporations, like IBM, routinely marked all source code with a copyright symbol.
Others asserted it only on the binaries they distributed or in the license agreements.
The case of software on the UNIX operating system and its derivatives is particularly
haphazard, and the existence of copyright notices by the authors varies widely. An
informal survey by Barry Gold singled out only James Gosling, Walter Tichy (author of
rcs), and the RAND Corporation as having adequately labeled source code with
copyright notices.246 Gosling was also the first to register EMACS as copyrighted
software in 1983, [pg201] while Stallman registered GNU EMACS just after version 15.34
was released in May 1985.247

244Diamond V. Diehr, 450 U.S. 175 (1981), the Supreme Court decision, forced the patent office to grant
patents on software. Interestingly, software patents had been granted much earlier, but went either
uncontested or unenforced. An excellent example is patent 3,568,156, held by Ken Thompson, on
regular expression pattern matching, granted in 1971.
245Calvin Mooers, in his 1975 article ”Computer Software and Copyright,” suggests that the IBM
unbundling decision opened the doors to thinking about copyright protection.
246Message-ID:
⌜933@sdcrdcf.uucp ⌟ .
247Goslings EMACS 264 (Stallman copied EMACS 84) is registered with the Library of Congress, as is GNU
EMACS 15.34. Goslings EMACS Library of Congress registration number is TX-3-407-458, registered in
1992. Stallmans registration number is TX-1-575-302, registered in May 1985. The listed dates are

Two Bits Christopher M. Kelty 158

http://groups.google.com/groups?selm=933@sdcrdcf.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The uncertainty of the change from reliance on trade secret to reliance on copyright 589

is clear in some of the statements made by Stallman around the reuse of Goslings
code. Since neither Stallman nor Gosling sought to keep the program secret in any
formeither by licensing it or by requiring users to keep it secretthere could be no
claims of trade-secret status on either program. Nonetheless, there was frequent
concern about whether one had seen any code (especially code from a UNIX operating
system, which is covered by trade secret) and whether code that someone else had
seen, rewritten, or distributed publicly was therefore ”in the public domain.”248 But,
at the same time, Stallman was concerned that rewriting Goslings display code would
be too difficult: ”Any display code would have a considerable resemblance to that
display code, just by virtue of doing the same job. Without any clear idea of exactly
how much difference there would have to be to reassure you users, I cannot tell
whether the rewrite would accomplish that. The law is not any guidance here. . . .
Writing display code that is significantly different is not easy.”249

Stallmans strategy for rewriting software, including his plan for the GNU operating 590

system, also involved ”not looking at” anyone elses code, so as to ensure that no
trade-secret violations would occur. Although it was clear that Goslings code was not a
trade secret, it was also not obvious that it was ”in the public domain,” an assumption
that might be made about other kinds of software protected by trade secret. Under
trade-secret rules, Goslings public distribution of GOSMACS appears to give the green
light for its reuse, but under copyright law, a law of strict liability, any unauthorized
use is a violation, regardless of how public the software may have been.250

The fact of trade-secret protection was nonetheless an important aspect of the 591

EMACS controversy: the version of EMACS that Warren Montgomery had created at
Bell Labs (and on which Zimmermans CCA version would be based) was the subject of
trade-secret protection by AT&T, by virtue of being distributed with UNIX and under a
nondisclosure agreement. AT&T was at the time still a year away from divestiture and
thus unable to engage in commercial exploitation of the software. When CCA sought
to commercialize [pg202] the version of UNIX Zimmerman had based on Montgomerys, it
was necessary to remove any AT&T code in order to avoid violating their trade-secret
status. CCA in turn distributed their EMACS as either binary or as source (the former
costing about $1,000, the latter as much as $7,000) and relied on copyright rather
than trade-secret protection to prevent unauthorized uses of their software.251

uncertain, however, since there are periodic re-registrations and updates.
248This is particularly confusing in the case of ”dbx.” Message-ID:
⌜4437@mit-eddie.uucp ⌟ , Message-ID:
⌜6238@shasta.arpa ⌟ , and Message-ID:
⌜730@masscomp.uucp ⌟ .
249Message-ID:
⌜4489@mit-eddie.uucp ⌟ .
250A standard practice well into the 1980s, and even later, was the creation of so-called clean-room
versions of software, in which new programmers and designers who had not seen the offending code
were hired to [pg336] re-implement it in order to avoid the appearance of trade-secret violation. Copyright
law is a strict liability law, meaning that ignorance does not absolve the infringer, so the practice of
”clean-room engineering” seems not to have been as successful in the case of copyright, as the
meaning of infringement remains murky.
251Message-ID:

Two Bits Christopher M. Kelty 159

http://groups.google.com/groups?selm=4437@mit-eddie.uucp
http://groups.google.com/groups?selm=6238@shasta.arpa
http://groups.google.com/groups?selm=730@masscomp.uucp
http://groups.google.com/groups?selm=4489@mit-eddie.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The uncertainty over copyright was thus in part a reflection of a changing strategy in 592

the computer-software industry, a kind of uneven development in which copyright
slowly and haphazardly came to replace trade secret as the main form of
intellectual-property protection. This switch had consequences for how
noncommercial programmers, researchers, and amateurs might interpret their own
work, as well as for the companies whose lawyers were struggling with the same
issues. Of course, copyright and trade-secret protection are not mutually exclusive,
but they structure the need for secrecy in different ways, and they make different
claims on issues like similarity, reuse, and modification.
The 1976 changes to copyright law were therefore extremely significant in setting out 593

a new set of boundaries and possibilities for intellectual-property arguments,
arguments that created a different kind of uncertainty from that of a changing
commercial strategy: a structural uncertainty created by the need for a case law to
develop around the statutory changes implemented by Congress.
The Copyright Act of 1976 introduced a number of changes that had been some ten 594

years in the making, largely organized around new technologies like photocopier
machines, home audiotaping, and the new videocassette recorders. It codified
fair-use rights, it removed the requirement to register, and it expanded the scope of
copyrightable materials considerably. It did not, however, explicitly address software,
an oversight that frustrated many in the computer industry, in particular the young
software industry. Pursuant to this oversight, the National Commission on New
Technological Uses of Copyright (CONTU) was charged with making suggestions for
changes to the law with respect to software. It was therefore only in 1980 that
Congress implemented these changes, adding software to title 17 of the U.S.
copyright statute as something that could be considered copyrightable by
law.252

The 1980 amendment to the copyright law answered one of three lingering questions 595

about the copyrightability of software: the simple question of whether it was
copyrightable material at all. Congress [pg203] answered yes. It did not, however,
designate what constituted ”software.” During the 1980s, a series of court cases
helped specify what counted as software, including source code, object code
(binaries), screen display and output, look and feel, and microcode and firmware.253

⌜730@masscomp.uucp ⌟ . AT&T was less concerned about copyright infringement than they were about
the status of their trade secrets. Zimmerman quotes a statement (from Message-ID:
⌜108@emacs.uucp ⌟) that he claims indicates this: ”Beginning with CCA EMACS version 162.36z, CCA
EMACS no longer contained any of the code from Mr. Montgomerys EMACS, or any methods or concepts
which would be known only by programmers familiar with BTL [Bell Labs] EMACS of any version.” The
statement did not mention copyright, but implied that CCA EMACS did not contain any AT&T trade
secrets, thus preserving their softwares trade-secret status. The fact that EMACS was a conceptual
designa particular kind of interface, a LISP interpreter, and extensibilitythat was very widely imitated
had no apparent bearing on the legal status of these secrets.
252CONTU Final Report, ⌜ http://digital-law-online.info/CONTU/contu1.html ⌟ (accessed 8 December 2006).
253The cases that determine the meaning of the 1976 and 1980 amendments begin around 1986:
Whelan Associates, Inc. v. Jaslow Dental Laboratory, Inc., et al., U.S. Third Circuit Court of Appeals, 4
August 1986, 797 F.2d 1222, 230 USPQ 481, affirming that ”structure (or sequence or organization)” of
software is copyrightable, not only the literal software code; Computer Associates International, Inc. v.
Altai, Inc., U.S. Second Circuit Court of Appeals, 22 June 1992, 982 F.2d 693, 23 USPQ 2d 1241, arguing

Two Bits Christopher M. Kelty 160

http://groups.google.com/groups?selm=730@masscomp.uucp
http://groups.google.com/groups?selm=108@emacs.uucp
http://digital-law-online.info/CONTU/contu1.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The final question, which the courts are still faced with adjudicating, concerns how
much similarity constitutes an infringement in each of these cases. The implications
of the codification of fair use and the requirement to register continue to unfold even
into the present.
The EMACS controversy confronts all three of these questions. Stallmans initial 596

creation of EMACS was accomplished under conditions in which it was unclear
whether copyright would apply (i.e., before 1980). Stallman, of course, did not
attempt to copyright the earliest versions of EMACS, but the 1976 amendments
removed the requirement to register, thus rendering everything written after 1978
automatically copyrighted. Registration represented only an additional effort to assert
ownership in cases of suspected infringement.
Throughout this period, the question of whether software was copyrightableor 597

copyrightedwas being answered differently in different cases: AT&T was relying on
trade-secret status; Gosling, Unipress, and CCA negotiated over copyrighted material;
and Stallman was experimenting with his ”commune.” Although the uncertainty was
answered statutorily by the 1980 amendment, not everyone instantly grasped this
new fact or changed practices based on it. There is ample evidence throughout the
Usenet archive that the 1976 changes were poorly understood, especially by
comparison with the legal sophistication of hackers in the 1990s and 2000s. Although
the law changed in 1980, practices changed more slowly, and justifications
crystallized in the context of experiments like that of GNU EMACS.
Further, a tension emerged between the meaning of source code and the meaning of 598

software. On the one hand was the question of whether the source code or the binary
code was copyrightable, and on the other was the question of defining the boundaries
of software in a context wherein all software relies on other software in order to run at
all. For instance, EMACS was originally built on top of TECO, which was referred to
both as an editor and as a programming language; even seemingly obvious
distinctions (e.g., application vs. programming language) were not necessarily always
clear. [pg204] If EMACS was an application written in TECO qua programming language,
then it would seem that EMACS should have its own copyright, distinct from any other
program written in TECO. But if EMACS was an extension or modification of TECO qua
editor, then it would seem that EMACS was a derivative work and would require the
explicit permission of the copyright holder.
Further, each version of EMACS, in order to be EMACS, needed a LISP interpreter in 599

order to make the extensible interface similar across all versions. But not all versions
used the same LISP interpreter. Goslings used an interpreter called MOCKLISP (mlisp
in the trademarked Unipress version), for instance. The question of whether the LISP
interpreter was a core component of the software or an ”environment” needed in
order to extend the application was thus also uncertain and unspecified in the law.

that the structure test in Whelan was not sufficient to determine infringement and thus proposing a
three-part ”abstraction-filiation-comparison” test; Apple Computer, Inc. v. Microsoft Corp, U.S. Ninth
Circuit Court of Appeals, 1994, 35 F.3d 1435, finding that the ”desktop metaphor” used in Macintosh and
Windows was not identical and thus did not constitute infringement; Lotus Development Corporation v.
Borland International, Inc. (94-2003), 1996, 513 U.S. 233, finding that the ”look and feel” of a menu
interface was not copyrightable.

Two Bits Christopher M. Kelty 161

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

While both might be treated as software suitable for copyright protection, both might
also be understood as necessary components out of which copyrightable software
would be built.254

Whats more, both the 1976 and 1980 amendments are silent on the copyright status 600

of source code vs. binary code. While all the versions of EMACS were distributed in
binary, Stallman and Gosling both included the source to allow users to modify it and
extend it, but they differed on the proper form of redistribution. The threshold
between modifying software for oneself and copyright infringement was not yet clear,
and it hung on the meaning of redistribution. Changing the software for use on a
single computer might be necessary to get it to run, but by the early days of the
Arpanet, innocently placing that code in a public directory on one computer could
look like mass distribution.255

Finally, the question of what constitutes infringement was at the heart of this 601

controversy and was not resolved by law or by legal adjudication, but simply by
rewriting the code to avoid the question. Stallmans use of Goslings code, his claim of
third-hand permission, the presence or absence of written permission, the sale of
GOSMACS to Unipress when it most likely contained code not written by Gosling but
copyrighted in his nameall of these issues complicated the question of infringement
to the point where Stallmans only feasible option for continuing to create software
was to avoid using anyone elses code at all. Indeed, Stallmans decision to use
Goslings code (which he claims to have changed in significant portions) might have
come to nothing if he had unethically [pg205] and illegally chosen not to include the
copyright notice at all (under the theory that the code was original to Stallman, or an
imitation, rather than a portion of Goslings work). Indeed, Chris Torek received
Goslings permission to remove Goslings name and copyright from the version of
display.c he had heavily modified, but he chose not to omit them: ”The only reason I
didnt do so is that I feel that he should certainly be credited as the inspiration (at the
very least) for the code.”256 Likewise, Stallman was most likely concerned to obey the
law and to give credit where credit was due, and therefore left the copyright notice
attacheda clear case of blurred meanings of authorship and ownership.
In short, the interplay between new statutes and their settlement in court or in 602

practice was a structural uncertainty that set novel constraints on the meaning of
copyright, and especially on the norms and forms of permission and reuse. GNU
EMACS 15.34 was the safest optiona completely new version that performed the
same tasks, but in a different manner, using different algorithms and code.
Even as it resolved the controversy, however, GNU EMACS posed new problems for 603

254The relationship between the definition of source and target befuddles software law to this day, one
of the most colorful examples being the DeCSS case. See Coleman, ”The Social Construction of
Freedom,” chap. 1: Gallery of CSS Descramblers, ⌜ http://www.cs.cmu.edu/ dst/DeCSS/gallery/ ⌟ .
255An interesting addendum here is that the manual for EMACS was also released at around the same
time as EMACS 16 and was available [pg337] as a TeX file. Stallman also attempted to deal with the paper
document in the same fashion (see Message-ID: 4734@mit-eddie.uucp, 19 July 1985), and this would
much later become a different and trickier issue that would result in the GNU Free Documentation
License.
256Message-ID:
⌜659@umcp-cs.uucp ⌟ .

Two Bits Christopher M. Kelty 162

http://www.cs.cmu.edu/~dst/DeCSS/gallery/
http://groups.google.com/groups?selm=659@umcp-cs.uucp
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Stallman: how would the EMACS commune survive if it wasnt clear whether one could
legally use another persons code, even if freely contributed? Was Goslings action in
selling work by others to Unipress legitimate? Would Stallman be able to enforce its
opposite, namely, prevent people from commercializing EMACS code they contributed
to him? How would Stallman avoid the future possibility of his own volunteers and
contributors later asserting that he had infringed on their copyright?
By 1986, Stallman was sending out a letter that recorded the formal transfer of 604

copyright to the Free Software Foundation (which he had founded in late 1985), with
equal rights to nonexclusive use of the software.257 While such a demand for the
expropriation of copyright might seem contrary to the aims of the GNU project, in the
context of the unfolding copyright law and the GOSMACS controversy it made perfect
sense. Having been accused himself of not having proper permission to use someone
elses copyrighted material in his free version of GNU EMACS, Stallman took steps to
forestall such an event in the future.
The interplay between technical and legal issues and ”ethical” concerns was reflected 605

in the practical issues of fear, intimidation, and common-sense (mis)understandings
of intellectual-property [pg206] law. Zimmermans veiled threats of legal liability were
directed not only at Stallman but at anyone who was using the program Stallman had
written; breaking the law was, for Zimmerman, an ethical lapse, not a problem of
uncertainty and change. Whether or not such an interpretation of the law was correct,
it did reveal the mechanisms whereby a low level of detailed knowledge about the
lawand a law in flux, at that (not to mention the litigious reputation of the U.S. legal
system worldwide)often seemed to justify a sense that buying software was simply a
less risky option than acquiring it for free. Businesses, not customers, it was assumed,
would be liable for such infringements. By the same token, the sudden concern of
software programmers (rather than lawyers) with the detailed mechanics of copyright
law meant that a very large number of people found themselves asserting
common-sense notions, only to be involved in a flame war over what the copyright
law ”actually says.”
Such discussion has continued and grown exponentially over the last twenty years, to 606

the point that Free Software hackers are now nearly as deeply educated about
intellectual property law as they are about software code.258 Far from representing
the triumph of the hacker ethic, the GNU General Public License represents the
concrete, tangible outcome of a relatively wide-ranging cultural conversation
hemmed in by changing laws, court decisions, practices both commercial and
academic, and experiments with the limits and forms of new media and new
technology.

Two Bits Christopher M. Kelty 163

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Conclusion 607

The rest of the story is quickly told: Stallman resigned from the AI Lab at MIT and 608

started the Free Software Foundation in 1985; he created a raft of new tools, but
ultimately no full UNIX operating system, and issued General Public License 1.0 in
1989. In 1990 he was awarded a MacArthur ”genius grant.” During the 1990s, he was
involved in various high-profile battles among a new generation of hackers; those
controversies included the debate around Linus Torvaldss creation of Linux (which
Stallman insisted be referred to as GNU/Linux), the forking of EMACS into Xemacs,
and Stallmans own participation inand exclusion fromconferences and events
devoted to Free Software. [pg207]

Between 1986 and 1990, the Free Software Foundation and its software became 609

extremely well known among geeks. Much of this had to do with the wealth of
software that they produced and distributed via Usenet and Arpanet. And as the
software circulated and was refined, so were the new legal constraints and the
process of teaching users to understand what they could and could not do with the
softwareand why it was not in the public domain.
Each time a new piece of software was released, it was accompanied by one or more 610

text files which explained what its legal status was. At first, there was a file called
DISTRIB, which contained an explanation of the rights the new owner had to modify
and redistribute the software.259 DISTRIB referenced a file called COPYING, which
contained the ”GNU EMACS copying permission notice,” also known as the GNU
EMACS GPL. The first of these licenses listed the copyright holder as Richard Stallman
(in 1985), but by 1986 all licenses referred to the Free Software Foundation as the
copyright holder.
As the Free Software Foundation released other pieces of software, the license was 611

renamedGNU CC GPL, a GNU Bison GPL, a GNU GDB GPL, and so on, all of which were
essentially the same termsin a file called COPYING, which was meant to be distributed
along with the software. In 1988, after the software and the licenses had become
considerably more widely available, Stallman made a few changes to the license that
relaxed some of the terms and specified others.260 This new version would become
the GNU GPL 1.0. By the time Free Software emerged into the public consciousness in
the late 1990s, the GPL had reached version 2.0, and the Free Software Foundation
had its own legal staff.
The creation of the GPL and the Free Software Foundation are often understood as 612

expressions of the hacker ethic, or of Stallmans ideological commitment to freedom.
But the story of EMACS and the complex technical and legal details that structure it

257Message-ID:
⌜8605202356.aa12789@ucbvax.berkeley.edu ⌟ .
258See Coleman, ”The Social Construction of Freedom,” chap. 6, on the Debian New Maintainer Process,
for an example of how induction into a Free Software project stresses the legal as much as the technical,
if not more.
259For example, Message-ID:
⌜5745@ucbvax.arpa ⌟ .
260See Message-ID:
⌜8803031948.aa01085@venus.berkeley.edu ⌟ .

Two Bits Christopher M. Kelty 164

http://groups.google.com/groups?selm=8605202356.aa12789@ucbvax.berkeley.edu
http://groups.google.com/groups?selm=5745@ucbvax.arpa
http://groups.google.com/groups?selm=8803031948.aa01085@venus.berkeley.edu
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

illustrate how the GPL is more than just a hack: it was a novel, privately ordered legal
”commune.” It was a space thoroughly independent of, but insinuated into the
existing bedrock of rules and practices of the world of corporate and university
software, and carved out of the slippery, changing substance of intellectual-property
statutes. At a time when the giants of the software industry were fighting to create a
different kind of opennessone that preserved and would even strengthen existing
relations of intellectual propertythis [pg208] hack was a radical alternative that
emphasized the sovereignty not of a national or corporate status quo, but of
self-fashioning individuals who sought to opt out of that national-corporate unity. The
creation of the GNU GPL was not a return to a golden age of small-scale communities
freed from the dominating structures of bureaucratic modernity, but the creation of
something new out of those structures. It relied on and emphasized, not their
destruction, but their stabilityat least until they are no longer necessary.
The significance of the GPL is due to its embedding within and emergence from the 613

legal and technical infrastructure. Such a practice of situated reworking is what gives
Free Softwareand perhaps all forms of engineering and creative practiceits warp and
weft. Stallmans decision to resign from the AI Lab and start the Free Software
Foundation is a good example; it allowed Stallman no only to devote energy to Free
Software but also to formally differentiate the organizations, to forestall at least the
potential threat that MIT (which still provided him with office space, equipment, and
network connection) might decide to claim ownership over his work. One might think
that the hacker ethic and the image of self-determining free individuals would
demand the total absence of organizations, but it requires instead their proliferation
and modulation. Stallman himself was never so purely free: he relied on the largesse
of MITs AI Lab, without which he would have had no office, no computer, no
connection to the network, and indeed, for a while, no home.
The Free Software Foundation represents a recognition on his part that individual and 614

communal independence would come at the price of a legally and bureaucratically
recognizable entity, set apart from MIT and responsible only to itself. The Free
Software Foundation took a classic form: a nonprofit organization with a hierarchy.
But by the early 1990s, a new set of experiments would begin that questioned the
look of such an entity. The stories of Linux and Apache reveal how these ventures
both depended on the work of the Free Software Foundation and departed from the
hierarchical tradition it represented, in order to innovate new similarly embedded
sociotechnical forms of coordination.
The EMACS text editor is still widely used, in version 22.1 as of 2007, and ported to 615

just about every conceivable operating system. The controversy with Unipress has
faded into the distance, as newer and more intense controversies have faced
Stallman and Free Software, [pg209] but the GPL has become the most widely used and
most finely scrutinized of the legal licenses. More important, the EMACS controversy
was by no means the only one to have erupted in the lives of software programmers;
indeed, it has become virtually a rite of passage for young geeks to be involved in
such debates, because it is the only way in which the technical details and the legal
details that confront geeks can be explored in the requisite detail. Not all such
arguments end in the complete rewriting of source code, and today many of them

Two Bits Christopher M. Kelty 165

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

concern the attempt to convince or evangelize for the release of source code under a
Free Software license. The EMACS controversy was in some ways a primal scenea
traumatic one, for surethat determined the outcome of many subsequent fights by
giving form to the Free Software license and its uses.

Two Bits Christopher M. Kelty 166

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

7.Coordinating Collaborations 616

The final component of Free Software is coordination. For many participants and 617

observers, this is the central innovation and essential significance of Open Source:
the possibility of enticing potentially huge numbers of volunteers to work freely on a
software project, leveraging the law of large numbers, ”peer production,” ”gift
economies,” and ”self-organizing social economies.”261 Coordination in Free Software
is of a distinct kind that emerged in the 1990s, directly out of the issues of sharing
source code, conceiving open systems, and writing copyright licensesall necessary
precursors to the practices of coordination. The stories surrounding these issues find
continuation in those of the Linux operating-system kernel, of the Apache Web server,
and of Source Code Management tools (SCMs); together these stories reveal how
coordination worked and what it looked like in the 1990s.
Coordination is important because it collapses and resolves the distinction between 618

technical and social forms into a meaningful [pg211] whole for participants. On the one
hand, there is the coordination and management of people; on the other, there is the
coordination of source code, patches, fixes, bug reports, versions, and
distributionsbut together there is a meaningful technosocial practice of managing,
decision-making, and accounting that leads to the collaborative production of
complex software and networks. Such coordination would be unexceptional,
essentially mimicking long-familiar corporate practices of engineering, except for one
key fact: it has no goals. Coordination in Free Software privileges adaptability over
planning. This involves more than simply allowing any kind of modification; the
structure of Free Software coordination actually gives precedence to a generalized
openness to change, rather than to the following of shared plans, goals, or ideals
dictated or controlled by a hierarchy of individuals.262

Adaptability does not mean randomness or anarchy, however; it is a very specific way 619

of resolving the tension between the individual curiosity and virtuosity of hackers,
and the collective coordination necessary to create and use complex software and
networks. No man is an island, but no archipelago is a nation, so to speak.
Adaptability preserves the ”joy” and ”fun” of programming without sacrificing the
careful engineering of a stable product. Linux and Apache should be understood as
the results of this kind of coordination: experiments with adaptability that have

261Research on coordination in Free Software forms the central core of recent academic work. Two of the
most widely read pieces, Yochai Benklers ”Coases Penguin” and Steven Webers The Success of Open
Source, are directed at classic research questions about collective action. Rishab Ghoshs ”Cooking Pot
Markets” and Eric Raymonds The Cathedral and the Bazaar set many of the terms of debate. Josh
Lerners and Jean Tiroles ”Some Simple Economics of Open Source” was an early contribution. Other
important works on the subject are Feller et al., Perspectives on Free and Open Source Software; Tuomi,
Networks of Innovation; Von Hippel, Democratizing Innovation.
262On the distinction between adaptability and adaptation, see Federico Iannacci, ”The Linux Managing
Model,” ⌜ http://opensource.mit.edu/papers/iannacci2.pdf ⌟ . Matt Ratto characterizes the activity of
Linux-kernel developers as a ”culture of re-working” and a ”design for re-design,” and captures the
exquisite details of such a practice both in coding and in the discussion between developers, an activity
he dubs the ”pressure of openness” that ”results as a contradiction between the need to maintain
productive collaborative activity and the simultaneous need to remain open to new development
directions” (”The Pressure of Openness,” 112-38).

Two Bits Christopher M. Kelty 167

http://opensource.mit.edu/papers/iannacci2.pdf
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

worked, to the surprise of many who have insisted that complexity requires planning
and hierarchy. Goals and planning are the province of governancethe practice of
goal-setting, orientation, and definition of controlbut adaptability is the province of
critique, and this is why Free Software is a recursive public: it stands outside power
and offers powerful criticism in the form of working alternatives. It is not the domain
of the newafter all Linux is just a rewrite of UNIXbut the domain of critical and
responsive public direction of a collective undertaking.
Linux and Apache are more than pieces of software; they are organizations of an 620

unfamiliar kind. My claim that they are ”recursive publics” is useful insofar as it gives
a name to a practice that is neither corporate nor academic, neither profit nor
nonprofit, neither governmental nor nongovernmental. The concept of recursive
public includes, within the spectrum of political activity, the creation, modification,
and maintenance of software, networks, and legal documents. While a ”public” in
most theories is a body of [pg212] people and a discourse that give expressive form to
some concern, ”recursive public” is meant to suggest that geeks not only give
expressive form to some set of concerns (e.g., that software should be free or that
intellectual property rights are too expansive) but also give concrete infrastructural
form to the means of expression itself. Linux and Apache are tools for creating
networks by which expression of new kinds can be guaranteed and by which further
infrastructural experimentation can be pursued. For geeks, hacking and programming
are variants of free speech and freedom of assembly.

From UNIX to Minix to Linux 621

Linux and Apache are the two paradigmatic cases of Free Software in the 1990s, both 622

for hackers and for scholars of Free Software. Linux is a UNIX-like operating-system
kernel, bootstrapped out of the Minix operating system created by Andrew
Tanenbaum.263 Apache is the continuation of the original National Center for
Supercomputing Applications (NCSA) project to create a Web server (Rob McCools
original program, called httpd), bootstrapped out of a distributed collection of people
who were using and improving that software.
Linux and Apache are both experiments in coordination. Both projects evolved 623

decision-making systems through experiment: a voting system in Apaches case and a
structured hierarchy of decision-makers, with Linus Torvalds as benevolent dictator, in
Linuxs case. Both projects also explored novel technical tools for coordination,
especially Source Code Management (SCM) tools such as Concurrent Versioning
System (cvs). Both are also cited as exemplars of how ”fun,” ”joy,” or interest
determine individual participation and of how it is possible to maintain and encourage
263Linux is often called an operating system, which Stallman objects to on the theory that a kernel is
only one part of an operating system. Stallman suggests that it be called GNU/Linux to reflect the use of
GNU operating-system tools in combination with the Linux kernel. This not-so-subtle ploy to take credit
for Linux reveals the complexity of the distinctions. The kernel is at the heart of hundreds of different
”distributions”such as Debian, Red Hat, SuSe, and Ubuntu Linuxall of which also use GNU tools, but [pg338]

which are often collections of software larger than just an operating system. Everyone involved seems
to have an intuitive sense of what an operating system is (thanks to the pedagogical success of UNIX),
but few can draw any firm lines around the object itself.

Two Bits Christopher M. Kelty 168

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

that participation and mutual aid instead of narrowing the focus or eliminating
possible routes for participation.
Beyond these specific experiments, the stories of Linux and Apache are detailed here 624

because both projects were actively central to the construction and expansion of the
Internet of the 1990s by allowing a massive number of both corporate and
noncorporate sites to cheaply install and run servers on the Internet. Were Linux and
Apache nothing more than hobbyist projects with a few thousand [pg213] interested
tinkerers, rather than the core technical components of an emerging planetary
network, they would probably not represent the same kind of revolutionary
transformation ultimately branded a ”movement” in 1998-99.
Linus Torvaldss creation of the Linux kernel is often cited as the first instance of the 625

real ”Open Source” development model, and it has quickly become the most studied
of the Free Software projects.264 Following its appearance in late 1991, Linux grew
quickly from a small, barely working kernel to a fully functional replacement for the
various commercial UNIX systems that had resulted from the UNIX wars of the 1980s.
It has become versatile enough to be used on desktop PCs with very little memory
and small CPUs, as well as in ”clusters” that allow for massively parallel computing
power.
When Torvalds started, he was blessed with an eager audience of hackers keen on 626

seeing a UNIX system run on desktop computers and a personal style of
encouragement that produced enormous positive feedback. Torvalds is often given
credit for creating, through his ”management style,” a ”new generation” of Free
Softwarea younger generation than that of Stallman and Raymond. Linus and Linux
are not in fact the causes of this change, but the results of being at the right place at
the right time and joining together a number of existing components. Indeed, the title
of Torvaldss semi-autobiographical reflection on LinuxJust for Fun: The Story of an
Accidental Revolutionarycaptures some of the character of its genesis.
The ”fun” referred to in the title reflects the privileging of adaptability over planning. 627

Projects, tools, people, and code that were fun were those that were not dictated by
existing rules and ideas. Fun, for geeks, was associated with the sudden availability,
especially for university students and amateur hackers, of a rapidly expanding
underground world of networks and softwareUsenet and the Internet especially, but
also university-specific networks, online environments and games, and tools for
navigating information of all kinds. Much of this activity occurred without the benefit
264Eric Raymond directed attention primarily to Linux in The Cathedral and the Bazaar. Many other
projects preceded Torvaldss kernel, however, including the tools that form the core of both UNIX and the
Internet: Paul Vixies implementation of the Domain Name System (DNS) known as BIND; Eric Allmans
sendmail for routing e-mail; the scripting languages perl (created by Larry Wall), python (Guido von
Rossum), and tcl/tk (John Ousterhout); the X Windows research project at MIT; and the derivatives of the
original BSD UNIX, FreeBSD and OpenBSD. On the development model of FreeBSD, see Jorgensen,
”Putting It All in the Trunk” and ”Incremental and Decentralized Integration in FreeBSD.” The story of the
genesis of Linux is very nicely told in Moody, Rebel Code, and Williams, Free as in Freedom; there are
also a number of papersavailable through Free/Opensource Research Community,
⌜http://freesoftware.mit.edu/that ⌟ analyze the development dynamics of the Linux kernel. See
especially Ratto, ”Embedded Technical Expression” and ”The Pressure of Openness.” I have conducted
much of my analysis of Linux by reading the Linux Kernel Mailing List archives, ⌜ http://lkml.org ⌟ . There
are also annotated summaries of the Linux Kernel Mailing List discussions at ⌜ http://kerneltraffic.org ⌟ .

Two Bits Christopher M. Kelty 169

http://freesoftware.mit.edu/%E2%80%94that
http://lkml.org
http://kerneltraffic.org
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

of any explicit theorization, with the possible exception of the discourse of
”community” (given print expression by Howard Rheingold in 1993 and present in
nascent form in the pages of Wired and Mondo 2000) that took place through much of
the 1990s.265 The late 1980s and early 1990s gave rise to vast experimentation with
the collaborative possibilities of the Internet as a medium. Particularly attractive was
[pg214] that this medium was built using freely available tools, and the tools themselves
were open to modification and creative reuse. It was a style that reflected the
quasi-academic and quasi-commercial environment, of which the UNIX operating
system was an exemplar not pure research divorced from commercial context, nor
entirely the domain of commercial rapacity and intellectual property.
Fun included the creation of mailing lists by the spread of software such as list-serv 628

and majordomo; the collaborative maintenance and policing of Usenet; and the
creation of Multi-User Dungeons (MUDs) and MUD Object Orienteds (MOOs), both of
which gave game players and Internet geeks a way to co-create software
environments and discover many of the problems of management and policing that
thereby emerged.266 It also included the increasing array of ”information services”
that were built on top of the Internet, like archie, gopher, Veronica, WAIS, ftp, IRCall of
which were necessary to access the growing information wealth of the underground
community lurking on the Internet. The meaning and practice of coordination in all of
these projects was up for grabs: some were organized strictly as university research
projects (gopher), while others were more fluid and open to participation and even
control by contributing members (MOOs and MUDs). Licensing issues were explicit in
some, unclear in some, and completely ignored in others. Some projects had
autocratic leaders, while others experimented with everything from representative
democracy to anarchism.
During this period (roughly 1987 to 1993), the Free Software Foundation attained a 629

mythic cult statusprimarily among UNIX and EMACS users. Part of this status was due
to the superiority of the tools Stallman and his collaborators had already created: the
GNU C Compiler (gcc), GNU EMACS, the GNU Debugger (gdb), GNU Bison, and loads
of smaller utilities that replaced the original AT&T UNIX versions. The GNU GPL had
also acquired a life of its own by this time, having reached maturity as a license and
become the de facto choice for those committed to Free Software and the Free
Software Foundation. By 1991, however, the rumors of the imminent appearance of
Stallmans replacement UNIX operating system had started to sound emptyit had
been six years since his public announcement of his intention. Most hackers were
skeptical of Stallmans operating-system project, even if they acknowledged the
success of all the other tools necessary to create a full-fledged operating system, and
Stallman himself was stymied by the development [pg215] of one particular component:
the kernel itself, called GNU Hurd.
Linus Torvaldss project was not initially imagined as a contribution to the Free 630

Software Foundation: it was a Helsinki university students late-night project in

265Howard Rheingold, The Virtual Community. On the prehistory of this period and the cultural location
of some key aspects, see Turner, From Counterculture to Cyberculture.
266Julian Dibbells ”A Rape in Cyberspace” and Sherry Turkles Life on the Screen are two classic examples
of the detailed forms of life and collaborative ethical creation that preoccupied denizens of these worlds.

Two Bits Christopher M. Kelty 170

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

learning the ins and outs of the relatively new Intel 386/486 microprocessor. Torvalds,
along with tens of thousands of other computer-science students, was being schooled
in UNIX through the pedagogy of Andrew Tanenbaums Minix, Douglas Comers
Xinu-PC, and a handful of other such teaching versions designed to run on IBM PCs.
Along with the classroom pedagogy in the 1980s came the inevitable connection to,
lurking on, and posting to the Usenet and Arpanet mailing lists devoted to technical
(and nontechnical) topics of all sorts.267 Torvalds was subscribed, naturally, to
comp.os.minix, the newsgroup for users of Minix.
The fact of Linus Torvaldss pedagogical embedding in the world of UNIX, Minix, the 631

Free Software Foundation, and the Usenet should not be underestimated, as it often is
in hagiographical accounts of the Linux operating system. Without this relatively
robust moral-technical order or infrastructure within which it was possible to be at the
right place at the right time, Torvaldss late-night dorm-room project would have
amounted to little more than thatbut the pieces were all in place for his modest goals
to be transformed into something much more significant.
Consider his announcement on 25 August 1991: 632

Hello everybody out there using minixIm doing a (free) operating system (just a 633

hobby, wont be big and professional like gnu) for 386(486) AT clones. This has
been brewing since april, and is starting to get ready. Id like any feedback on
things people like/dislike in minix, as my OS resembles it somewhat (same
physical layout of the file-system (due to practical reasons) among other things).
Ive currently ported bash(1.08) and gcc(1.40), and things seem to work. This
implies that Ill get something practical within a few months, and Id like to know
what features most people would want. Any suggestions are welcome, but I wont
promise Ill implement them :-)
Linus . . . 634

PS. Yesits free of any minix code, and it has a multi-threaded fs. It is NOT portable 635

(uses 386 task switching etc), and it probably never will support anything other
than AT-harddisks, as thats all I have :-(.268

Torvaldss announcement is telling as to where his project fit into the existing context: 636

”just a hobby,” not ”big and professional like gnu” (a comment that suggests the
stature that Stallman and the Free Software Foundation had achieved, especially
since they were in reality anything but ”big and professional”). The announcement
was posted to the Minix list and thus was essentially directed at Minix users; but
Torvalds also makes a point of insisting that the system would be free of cost, and his
postscript furthermore indicates that it would be free of Minix code, just as Minix had
been free of AT&T code.
Torvalds also mentions that he has ported ”bash” and ”gcc,” software created and 637

267The yearly influx of students to the Usenet and Arpanet in September earned that month the title
”the longest month,” due to the need to train new users in use and etiquette on the newsgroups. Later
in the 1990s, when AOL allowed subscribers access to the Usenet hierarchy, it became known as
”eternal September.” See ”September that Never Ended,” Jargon File,
⌜ http://catb.org/ esr/jargon/html/S/September-that-never-ended.html ⌟ .
268Message-ID:
⌜1991aug25.205708.9541@klaava.helsinki.fi ⌟ .

Two Bits Christopher M. Kelty 171

http://catb.org/~esr/jargon/html/S/September-that-never-ended.html
http://groups.google.com/groups?selm=1991aug25.205708.9541@klaava.helsinki.fi
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

distributed by the Free Software Foundation and tools essential for interacting with
the computer and compiling new versions of the kernel. Torvaldss decision to use
these utilities, rather than write his own, reflects both the boundaries of his project
(an operating-system kernel) and his satisfaction with the availability and reusability
of software licensed under the GPL.
So the system is based on Minix, just as Minix had been based on UNIXpiggy-backed 638

or bootstrapped, rather than rewritten in an entirely different fashion, that is, rather
than becoming a different kind of operating system. And yet there are clearly
concerns about the need to create something that is not Minix, rather than simply
extending or ”debugging” Minix. This concern is key to understanding what happened
to Linux in 1991.
Tanenbaums Minix, since its inception in 1984, was always intended to allow students 639

to see and change the source code of Minix in order to learn how an operating system
worked, but it was not Free Software. It was copyrighted and owned by Prentice Hall,
which distributed the textbooks. Tanenbaum made the casesimilar to Goslings case
for Unipressthat Prentice Hall was distributing the system far wider than if it were
available only on the Internet: ”A point which I dont think everyone appreciates is
that making something available by FTP is not necessarily the way to provide the
widest distribution. The Internet is still a highly elite group. Most computer users are
NOT on it. . . . MINIX is also widely used in Eastern Europe, Japan, Israel, South
America, etc. Most of these people would never have gotten it if there hadnt been a
company selling it.”269

By all accounts, Prentice Hall was not restrictive in its sublicensing of the operating 640

system, if people wanted to create an ”enhanced” [pg217] version of Minix. Similarly,
Tanenbaums frequent presence on comp.os.minix testified to his commitment to
sharing his knowledge about the system with anyone who wanted itnot just paying
customers. Nonetheless, Torvaldss pointed use of the word free and his decision not
to reuse any of the code is a clear indication of his desire to build a system
completely unencumbered by restrictions, based perhaps on a kind of intuitive
folkloric sense of the dangers associated with cases like that of EMACS.270

The most significant aspect of Torvaldss initial message, however, is his request: ”Id 641

like to know what features most people would want. Any suggestions are welcome,
but I wont promise Ill implement them.” Torvaldss announcement and the subsequent
interest it generated clearly reveal the issues of coordination and organization that

269Message-ID:
⌜12595@star.cs.vu.nl ⌟ .
270Indeed, initially, Torvaldss terms of distribution for Linux were more restrictive than the GPL, including
limitations on distributing it for a fee or for handling costs. Torvalds eventually loosened the restrictions
and switched to the GPL in February 1992. Torvaldss release notes for Linux 0.12 say, ”The Linux
copyright will change: Ive had a couple of requests [pg339] to make it compatible with the GNU copyleft,
removing the you may not distribute it for money condition. I agree. I propose that the copyright be
changed so that it conforms to GNUpending approval of the persons who have helped write code. I
assume this is going to be no problem for anybody: If you have grievances (I wrote that code assuming
the copyright would stay the same) mail me. Otherwise The GNU copyleft takes effect as of the first of
February. If you do not know the gist of the GNU copyrightread it”
(⌜ http://www.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.12 ⌟).

Two Bits Christopher M. Kelty 172

http://groups.google.com/groups?selm=12595@star.cs.vu.nl
http://www.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.12
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

would come to be a feature of Linux. The reason Torvalds had so many eager
contributors to Linux, from the very start, was because he enthusiastically took them
off of Tanenbaums hands.

Design and Adaptability 642

Tanenbaums role in the story of Linux is usually that of the straw mana crotchety old 643

computer-science professor who opposes the revolutionary young Torvalds.
Tanenbaum did have a certain revolutionary reputation himself, since Minix was used
in classrooms around the world and could be installed on IBM PCs (something no
other commercial UNIX vendors had achieved), but he was also a natural target for
people like Torvalds: the tenured professor espousing the textbook version of an
operating system. So, despite the fact that a very large number of people were using
or knew of Minix as a UNIX operating system (estimates of comp.os.minix subscribers
were at 40,000), Tanenbaum was emphatically not interested in collaboration or
collaborative debugging, especially if debugging also meant creating extensions and
adding features that would make the system bigger and harder to use as a
stripped-down tool for teaching. For Tanenbaum, this point was central: ”Ive been
repeatedly offered virtual memory, paging, symbolic links, window systems, and all
manner of features. I have usually declined because I am still trying to keep the
system simple enough for students to understand. You can put all this stuff in your
version, but I wont [pg218] put it in mine. I think it is this point which irks the people
who say MINIX is not free, not the $60.”271

So while Tanenbaum was in sympathy with the Free Software Foundations goals 644

(insofar as he clearly wanted people to be able to use, update, enhance, and learn
from software), he was not in sympathy with the idea of having 40,000 strangers
make his software ”better.” Or, to put it differently, the goals of Minix remained those
of a researcher and a textbook author: to be useful in classrooms and cheap enough
to be widely available and usable on the largest number of cheap computers.
By contrast, Torvaldss ”fun” project had no goals. Being a cocky nineteen-year-old 645

student with little better to do (no textbooks to write, no students, grants, research
projects, or committee meetings), Torvalds was keen to accept all the ready-made
help he could find to make his project better. And with 40,000 Minix users, he had a
more or less instant set of contributors. Stallmans audience for EMACS in the early
1980s, by contrast, was limited to about a hundred distinct computers, which may
have translated into thousands, but certainly not tens of thousands of users.
Tanenbaums work in creating a generation of students who not only understood the
internals of an operating system but, more specifically, understood the internals of
the UNIX operating system created a huge pool of competent and eager UNIX hackers.
It was the work of porting UNIX not only to various machines but to a generation of
minds as well that set the stage for this eventand this is an essential, though often
overlooked component of the success of Linux.

271Message-ID:
⌜12667@star.cs.vu.nl ⌟ .

Two Bits Christopher M. Kelty 173

http://groups.google.com/groups?selm=12667@star.cs.vu.nl
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Many accounts of the Linux story focus on the fight between Torvalds and Tanenbaum, 646

a fight carried out on comp.os.minix with the subject line ”Linux is obsolete.”272
Tanenbaum argued that Torvalds was reinventing the wheel, writing an operating
system that, as far as the state of the art was concerned, was now obsolete. Torvalds,
by contrast, asserted that it was better to make something quick and dirty that
worked, invite contributions, and worry about making it state of the art later. Far from
illustrating some kind of outmoded conservatism on Tanenbaums part, the debate
highlights the distinction between forms of coordination and the meanings of
collaboration. For Tanenbaum, the goals of Minix were either pedagogical or
academic: to teach operating-system essentials or to explore new possibilities in
operating-system design. By this model, Linux could do neither; it couldnt be used in
the classroom because [pg219] it would quickly become too complex and feature-laden
to teach, and it wasnt pushing the boundaries of research because it was an
out-of-date operating system. Torvalds, by contrast, had no goals. What drove his
progress was a commitment to fun and to a largely inarticulate notion of what
interested him and others, defined at the outset almost entirely against Minix and
other free operating systems, like FreeBSD. In this sense, it could only emerge out of
the contextwhich set the constraints on its designof UNIX, open systems, Minix, GNU,
and BSD.
Both Tanenbaum and Torvalds operated under a model of coordination in which one 647

person was ultimately responsible for the entire project: Tanenbaum oversaw Minix
and ensured that it remained true to its goals of serving a pedagogical audience;
Torvalds would oversee Linux, but he would incorporate as many different features as
users wanted or could contribute. Very quicklywith a pool of 40,000 potential
contributorsTorvalds would be in the same position Tanenbaum was in, that is, forced
to make decisions about the goals of Linux and about which enhancements would go
into it and which would not. What makes the story of Linux so interesting to observers
is that it appears that Torvalds made no decision: he accepted almost
everything.
Tanenbaums goals and plans for Minix were clear and autocratically formed. Control, 648

hierarchy, and restriction are after all appropriate in the classroom. But Torvalds
wanted to do more. He wanted to go on learning and to try out alternatives, and with
Minix as the only widely available way to do so, his decision to part ways starts to
make sense; clearly he was not alone in his desire to explore and extend what he had
learned. Nonetheless, Torvalds faced the problem of coordinating a new project and
making similar decisions about its direction. On this point, Linux has been the subject
of much reflection by both insiders and outsiders. Despite images of Linux as either
an anarchic bazaar or an autocratic dictatorship, the reality is more subtle: it includes
a hierarchy of contributors, maintainers, and ”trusted lieutenants” and a
sophisticated, informal, and intuitive sense of ”good taste” gained through reading
and incorporating the work of co-developers.
While it was possible for Torvalds to remain in charge as an individual for the first few 649

years of Linux (1991-95, roughly), he eventually began to delegate some of that
272Message-ID:
⌜12595@star.cs.vu.nl ⌟ . Key parts of the controversy were reprinted in Dibona et al. Open Sources.

Two Bits Christopher M. Kelty 174

http://groups.google.com/groups?selm=12595@star.cs.vu.nl
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

control to people who would make decisions about different subcomponents of the
kernel. [pg220] It was thus possible to incorporate more of the ”patches” (pieces of
code) contributed by volunteers, by distributing some of the work of evaluating them
to people other than Torvalds. This informal hierarchy slowly developed into a formal
one, as Steven Weber points out: ”The final de facto grant of authority came when
Torvalds began publicly to reroute relevant submissions to the lieutenants. In 1996
the decision structure became more formal with an explicit differentiation between
credited developers and maintainers. . . . If this sounds very much like a hierarchical
decision structure, that is because it is onealbeit one in which participation is strictly
voluntary.”273

Almost all of the decisions made by Torvalds and lieutenants were of a single kind: 650

whether or not to incorporate a piece of code submitted by a volunteer. Each such
decision was technically complex: insert the code, recompile the kernel, test to see if
it works or if it produces any bugs, decide whether it is worth keeping, issue a new
version with a log of the changes that were made. Although the various official
leaders were given the authority to make such changes, coordination was still
technically informal. Since they were all working on the same complex technical
object, one person (Torvalds) ultimately needed to verify a final version, containing all
the subparts, in order to make sure that it worked without breaking.
Such decisions had very little to do with any kind of design goals or plans, only with 651

whether the submitted patch ”worked,” a term that reflects at once technical,
aesthetic, legal, and design criteria that are not explicitly recorded anywhere in the
projecthence, the privileging of adaptability over planning. At no point were the
patches assigned or solicited, although Torvalds is justly famous for encouraging
people to work on particular problems, but only if they wanted to. As a result, the
system morphed in subtle, unexpected ways, diverging from its original, supposedly
backwards ”monolithic” design and into a novel configuration that reflected the
interests of the volunteers and the implicit criteria of the leaders.
By 1995-96, Torvalds and lieutenants faced considerable challenges with regard to 652

hierarchy and decision-making, as the project had grown in size and complexity. The
first widely remembered response to the ongoing crisis of benevolent dictatorship in
Linux was the creation of ”loadable kernel modules,” conceived as a way to release
some of the constant pressure to decide which patches would be incorporated into
the kernel. The decision to modularize [pg221] Linux was simultaneously technical and
social: the software-code base would be rewritten to allow for external loadable
modules to be inserted ”on the fly,” rather than all being compiled into one large
binary chunk; at the same time, it meant that the responsibility to ensure that the
modules worked devolved from Torvalds to the creator of the module. The decision
repudiated Torvaldss early opposition to Tanenbaum in the ”monolithic vs.
microkernel” debate by inviting contributors to separate core from peripheral
functions of an operating system (though the Linux kernel remains monolithic
compared to classic microkernels). It also allowed for a significant proliferation of new
ideas and related projects. It both contracted and distributed the hierarchy; now Linus
was in charge of a tighter project, but more people could work with him according to
273Steven Weber, The Success of Open Source, 164.

Two Bits Christopher M. Kelty 175

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

structured technical and social rules of responsibility.
Creating loadable modules changed the look of Linux, but not because of any 653

planning or design decisions set out in advance. The choice is an example of the
privileged adaptability of the Linux, resolving the tension between the curiosity and
virtuosity of individual contributors to the project and the need for hierarchical control
in order to manage complexity. The commitment to adaptability dissolves the
distinction between the technical means of coordination and the social means of
management. It is about producing a meaningful whole by which both people and
code can be coordinatedan achievement vigorously defended by kernel hackers.
The adaptable organization and structure of Linux is often described in evolutionary 654

terms, as something without teleological purpose, but responding to an environment.
Indeed, Torvalds himself has a weakness for this kind of explanation.

Lets just be honest, and admit that it [Linux] wasnt designed. 655

Sure, theres design toothe design of UNIX made a scaffolding for the system, and 656

more importantly it made it easier for people to communicate because people
had a mental model for what the system was like, which means that its much
easier to discuss changes.
But thats like saying that you know that youre going to build a car with four 657

wheels and headlightsits true, but the real bitch is in the details.
And I know better than most that what I envisioned 10 years ago has nothing in 658

common with what Linux is today. There was certainly no premeditated design
there.274

Adaptability does not answer the questions of intelligent design. Why, for example, 659

does a car have four wheels and two headlights? Often these discussions are
polarized: either technical objects are designed, or they are the result of random
mutations. What this opposition overlooks is the fact that design and the coordination
of collaboration go hand in hand; one reveals the limits and possibilities of the other.
Linux represents a particular example of such a problematicone that has become the
paradigmatic case of Free Softwarebut there have been many others, including UNIX,
for which the engineers created a system that reflected the distributed collaboration
of users around the world even as the lawyers tried to make it conform to legal rules
about licensing and practical concerns about bookkeeping and support.
Because it privileges adaptability over planning, Linux is a recursive public: operating 660

systems and social systems. It privileges openness to new directions, at every level.
It privileges the right to propose changes by actually creating them and trying to
convince others to use and incorporate them. It privileges the right to fork the
software into new and different kinds of systems. Given what it privileges, Linux ends
up evolving differently than do systems whose life and design are constrained by
corporate organization, or by strict engineering design principles, or by legal or
marketing definitions of productsin short, by clear goals. What makes this distinction
between the goal-oriented design principle and the principle of adaptability important
274Quoted in Zack Brown, ”Kernel Traffic #146 for 17Dec2001,” Kernel Traffic,
⌜ http://www.kerneltraffic.org/kernel-traffic/kt20011217_146.html ⌟ ; also quoted in Federico Iannacci, ”The Linux
Managing Model,” ⌜ http://opensource.mit.edu/papers/iannacci2.pdf ⌟ .

Two Bits Christopher M. Kelty 176

http://www.kerneltraffic.org/kernel-traffic/kt20011217_146.html
http://opensource.mit.edu/papers/iannacci2.pdf
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

is its relationship to politics. Goals and planning are the subject of negotiation and
consensus, or of autocratic decision-making; adaptability is the province of critique. It
should be remembered that Linux is by no means an attempt to create something
radically new; it is a rewrite of a UNIX operating system, as Torvalds points out, but
one that through adaptation can end up becoming something new.

Patch and Vote 661

The Apache Web server and the Apache Group (now called the Apache Software 662

Foundation) provide a second illuminating example of the how and why of
coordination in Free Software of the 1990s. As with the case of Linux, the
development of the Apache project illustrates how adaptability is privileged over
planning [pg223] and, in particular, how this privileging is intended to resolve the
tensions between individual curiosity and virtuosity and collective control and
decision-making. It is also the story of the progressive evolution of coordination, the
simultaneously technical and social mechanisms of coordinating people and code,
patches and votes.
The Apache project emerged out of a group of users of the original httpd (HyperText 663

Transmission Protocol Daemon) Web server created by Rob McCool at NCSA, based on
the work of Tim Berners-Lees World Wide Web project at CERN. Berners-Lee had
written a specification for the World Wide Web that included the mark-up language
HTML, the transmission protocol http, and a set of libraries that implemented the
code known as libwww, which he had dedicated to the public domain.275

The NCSA, at the University of Illinois, Urbana-Champaign, picked up both www 664

projects, subsequently creating both the first widely used browser, Mosaic, directed
by Marc Andreessen, and httpd. Httpd was public domain up until version 1.3.
Development slowed when McCool was lured to Netscape, along with the team that
created Mosaic. By early 1994, when the World Wide Web had started to spread,
many individuals and groups ran Web servers that used httpd; some of them had
created extensions and fixed bugs. They ranged from university researchers to
corporations like Wired Ventures, which launched the online version of its magazine
(HotWired.com) in 1994. Most users communicated primarily through Usenet, on the
comp.infosystems.www.* newsgroups, sharing experiences, instructions, and updates
in the same manner as other software projects stretching back to the beginning of the
Usenet and Arpanet newsgroups.
When NCSA failed to respond to most of the fixes and extensions being proposed, a 665

group of several of the most active users of httpd began to communicate via a
mailing list called new-httpd in 1995. The list was maintained by Brian Behlendorf,
the webmaster for HotWired, on a server he maintained called hyperreal; its
participants were those who had debugged httpd, created extensions, or added
functionality. The list was the primary means of association and communication for a
diverse group of people from various locations around the world. During the next

275Message-ID:
⌜673c43e160C1a758@sluvca.slu.edu ⌟ . See also, Berners-Lee, Weaving the Web.

Two Bits Christopher M. Kelty 177

http://groups.google.com/groups?selm=673c43e160C1a758@sluvca.slu.edu
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

year, participants hashed out issues related to coordination, to the identity of and the
processes involved in patching the ”new” httpd, version 1.3.276 [pg224]

Patching a piece of software is a peculiar activity, akin to debugging, but more like a 666

form of ex post facto design. Patching covers the spectrum of changes that can be
made: from fixing security holes and bugs that prevent the software from compiling
to feature and performance enhancements. A great number of the patches that
initially drew this group together grew out of needs that each individual member had
in making a Web server function. These patches were not due to any design or
planning decisions by NCSA, McCool, or the assembled group, but most were useful
enough that everyone gained from using them, because they fixed problems that
everyone would or could encounter. As a result, the need for a coordinated new-httpd
release was key to the groups work. This new version of NCSA httpd had no name
initially, but apache was a persistent candidate; the somewhat apocryphal origin of
the name is that it was ”a patchy webserver.”277

At the outset, in February and March 1995, the pace of work of the various members 667

of new-httpd differed a great deal, but was in general extremely rapid. Even before
there was an official release of a new httpd, process issues started to confront the
group, as Roy Fielding later explained: ”Apache began with a conscious attempt to
solve the process issues first, before development even started, because it was clear
from the very beginning that a geographically distributed set of volunteers, without
any traditional organizational ties, would require a unique development process in
order to make decisions.”278

The need for process arose more or less organically, as the group developed 668

mechanisms for managing the various patches: assigning them IDs, testing them,
and incorporating them ”by hand” into the main source-code base. As this happened,
members of the list would occasionally find themselves lost, confused by the process
or the efficiency of other members, as in this message from Andrew Wilson
concerning Cliff Skolnicks management of the list of bugs:

Cliff, can you concentrate on getting an uptodate copy of the bug/improvement 669

list please. Ive already lost track of just what the heck is meant to be going on.
Also whats the status of this pre-pre-pre release Apache stuff. Its either a pre or it
isnt surely? AND is the pre-pre-etc thing the same as the thing Cliff is meant to be
working on?
Just what the fsck is going on anyway? Ay, ay ay! Andrew Wilson.279 [pg225] 670

276The original Apache Group included Brian Behlendorf, Roy T. Fielding, Rob Harthill, David Robinson,
Cliff Skolnick, Randy Terbush, Robert S. Thau, Andrew Wilson, Eric Hagberg, Frank Peters, and Nicolas
Pioch. The mailing list new-httpd eventually became the Apache developers list. The archives are
available at ⌜ http://mail-archives.apache.org/mod_mbox/httpd-dev/ ⌟ and cited hereafter as ”Apache developer
mailing list,” followed by sender, subject, date, and time.
277For another version of the story, see Moody, Rebel Code, 127-28. The official story honors the Apache
Indian tribes for ”superior skills in warfare strategy and inexhaustible endurance.” Evidence of the
concern of the original members over the use of the name is clearly visible in the archives of the Apache
project. See esp. Apache developer mailing list, Robert S. Thau, Subject: The political correctness
question . . . , 22 April 1995, 21:06 EDT.
278Mockus, Fielding, and Herbsleb, ”Two Case Studies of Open Source Software Development,” 3.

Two Bits Christopher M. Kelty 178

http://mail-archives.apache.org/mod_mbox/httpd-dev/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

To which Rob Harthill replied, ”It is getting messy. I still think we should all implement 671

one patch at a time together. At the rate (and hours) some are working we can
probably manage a couple of patches a day. . . . If this is acceptable to the rest of the
group, I think we should order the patches, and start a systematic processes of
discussion, implementations and testing.”280

Some members found the pace of work exciting, while others appealed for slowing or 672

stopping in order to take stock. Cliff Skolnick created a system for managing the
patches and proposed that list-members vote in order to determine which patches be
included.281 Rob Harthill voted first.
Here are my votes for the current patch list shown at ⌜ http://www.hyperreal.com/httpd/patchgen/list.cgi ⌟ Ill 673

use a vote of -1 have a problem with it 0 havent tested it yet (failed to understand it or whatever) +1
tried it, liked it, have no problem with it. [Here Harthill provides a list of votes on each patch.] If this
voting scheme makes sense, lets use it to filter out the stuff were happy with. A ”-1” vote should veto
any patch. There seems to be about 6 or 7 of us actively commenting on patches, so Id suggest that
once a patch gets a vote of +4 (with no vetos), we can add it to an alpha.282

Harthills votes immediately instigated discussion about various patches, further 674

voting, and discussion about the process (i.e., how many votes or vetoes were
needed), all mixed together in a flurry of e-mail messages. The voting process was far
from perfect, but it did allow some consensus on what ”apache” would be, that is,
which patches would be incorporated into an ”official” (though not very public)
release: Apache 0.2 on 18 March.283 Without a voting system, the group of
contributors could have gone on applying patches individually, each in his own
context, fixing the problems that ailed each user, but ignoring those that were
irrelevant or unnecessary in that context. With a voting process, however, a
convergence on a tested and approved new-httpd could emerge. As the process was
refined, members sought a volunteer to take votes, to open and close the voting once
a week, and to build a new version of Apache when the voting was done. (Andrew
Wilson was the first volunteer, to which Cliff Skolnick replied, ”I guess the first vote is
[pg226] voting Andrew as the vote taker :-).”)284 The patch-and-vote process that
emerged in the early stages of Apache was not entirely novel; many contributors
noted that the FreeBSD project used a similar process, and some suggested the need
for a ”patch coordinator” and others worried that ”using patches gets very ugly, very
quickly.”285

The significance of the patch-and-vote system was that it clearly represented the 675

tension between the virtuosity of individual developers and a group process aimed at

279Apache developer mailing list, Andrew Wilson, Subject: Re: httpd patch B5 updated, 14 March 1995,
21:49 GMT.
280Apache developer mailing list, Rob Harthill, Subject: Re: httpd patch B5 updated, 14 March 1995,
15:10 MST.
281Apache developer mailing list, Cliff Skolnick, Subject: Process (please read), 15 March 1995, 3:11 PST;
and Subject: Patch file format, 15 March 1995, 3:40 PST.
282Apache developer mailing list, Rob Harthill, Subject: patch list vote, 15 March 1995, 13:21:24 MST.
283Apache developer mailing list, Rob Harthill, Subject: apache-0.2 on hyperreal, 18 March 1995, 18:46
MST.
284Apache developer mailing list, Cliff Skolnick, Subject: Re: patch list vote, 21 March 1995, 2:47 PST.
285Apache developer mailing list, Paul Richards, Subject: Re: vote counting, 21 March 1995, 22:24 GMT.

Two Bits Christopher M. Kelty 179

http://www.hyperreal.com/httpd/patchgen/list.cgi
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

creating and maintaining a common piece of software. It was a way of balancing the
ability of each separate individuals expertise against a common desire to ship and
promote a stable, bug-free, public-domain Web server. As Roy Fielding and others
would describe it in hindsight, this tension was part of Apaches advantage.

Although the Apache Group makes decisions as a whole, all of the actual work of 676

the project is done by individuals. The group does not write code, design
solutions, document products, or provide support to our customers; individual
people do that. The group provides an environment for collaboration and an
excellent trial-by-fire for ideas and code, but the creative energy needed to solve
a particular problem, redesign a piece of the system, or fix a given bug is almost
always contributed by individual volunteers working on their own, for their own
purposes, and not at the behest of the group. Competitors mistakenly assume
Apache will be unable to take on new or unusual tasks because of the perception
that we act as a group rather than follow a single leader. What they fail to see is
that, by remaining open to new contributors, the group has an unlimited supply of
innovative ideas, and it is the individuals who chose to pursue their own ideas
who are the real driving force for innovation.286

Although openness is widely touted as the key to the innovations of Apache, the 677

claim is somewhat disingenuous: patches are just that, patches. Any large-scale
changes to the code could not be accomplished by applying patches, especially if
each patch must be subjected to a relatively harsh vote to be included. The only way
to make sweeping changesespecially changes that require iteration and testing to get
rightis to engage in separate ”branches” of a project or to differentiate between
internal and external releasesin short, to fork the project temporarily in hopes that it
would soon rejoin its stable parent. Apache encountered this problem very early on
with the ”Shambhala” rewrite of httpd by Robert Thau. [pg227]

Shambhala was never quite official: Thau called it his ”noodling” server, or a ”garage” 678

project. It started as his attempt to rewrite httpd as a server which could handle and
process multiple requests at the same time. As an experiment, it was entirely his own
project, which he occasionally referred to on the new-httpd list: ”Still hacking
Shambhala, and laying low until it works well enough to talk about.”287 By mid-June
of 1995, he had a working version that he announced, quite modestly, to the list as ”a
garage project to explore some possible new directions I thought *might* be useful for
the group to pursue.”288 Another list member, Randy Terbush, tried it out and gave it
rave reviews, and by the end of June there were two users exclaiming its virtues. But
since it hadnt ever really been officially identified as a fork, or an alternate
development pathway, this led Rob Harthill to ask: ”So whats the situation regarding
Shambhala and Apache, are those of you who have switched to it giving up on Apache
and this project? If so, do you need a separate list to discuss Shambhala?”289

Harthill had assumed that the NCSA code-base was ”tried and tested” and that 679

Shambhala represented a split, a fork: ”The question is, should we all go in one
286Roy T. Fielding, ”Shared Leadership in the Apache Project.”
287Apache developer mailing list, Robert S. Thau, Subject: Re: 0.7.2b, 7 June 1995, 17:27 EDT.
288Apache developer mailing list, Robert S. Thau, Subject: My Garage Project, 12 June 1995, 21:14 GMT.
289Apache developer mailing list, Rob Harthill, Subject: Re: Shambhala, 30 June 1995, 9:44 MDT.

Two Bits Christopher M. Kelty 180

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

direction, continue as things stand or Shambahla [sic] goes off on its own?”290 His
query drew out the miscommunication in detail: that Thau had planned it as a
”drop-in” replacement for the NCSA httpd, and that his intentions were to make it the
core of the Apache server, if he could get it to work. Harthill, who had spent no small
amount of time working hard at patching the existing server code, was not pleased,
and made the core issues explicit.

Maybe it was rsts [Robert Thaus] choice of phrases, such as ”garage project” and 680

it having a different name, maybe I didnt read his mailings thoroughly enough,
maybe they werent explicit enough, whatever. . . . Its a shame that nobody using
Shambhala (who must have realized what was going on) didnt raise these issues
weeks ago. I can only presume that rst was too modest to push Shambhala, or at
least discussion of it, onto us more vigourously. I remember saying words to the
effect of ”this is what I plan to do, stop me if you think this isnt a good idea.” Why
the hell didnt anyone say something? . . . [D]id others get the same impression
about rsts work as I did? Come on people, if you want to be part of this group,
collaborate!291 [pg228]

Harthills injunction to collaborate seems surprising in the context of a mailing list and 681

project created to facilitate collaboration, but the injunction is specific: collaborate by
making plans and sharing goals. Implicit in his words is the tension between a project
with clear plans and goals, an overarching design to which everyone contributes, as
opposed to a group platform without clear goals that provides individuals with a
setting to try out alternatives. Implicit in his words is the spectrum between
debugging an existing piece of software with a stable identity and rewriting the
fundamental aspects of it to make it something new. The meaning of collaboration
bifurcates here: on the one hand, the privileging of the autonomous work of
individuals which is submitted to a group peer review and then incorporated; on the
other, the privileging of a set of shared goals to which the actions and labor of
individuals is subordinated.292

Indeed, the very design of Shambhala reflects the former approach of privileging 682

individual work: like UNIX and EMACS before it, Shambhala was designed as a
modular system, one that could ”make some of that process [the patch-and-vote
process] obsolete, by allowing stuff which is not universally applicable (e.g., database
back-ends), controversial, or just half-baked, to be shipped anyway as optional
modules.”293 Such a design separates the core platform from the individual
experiments that are conducted on it, rather than creating a design that is modular in
the hierarchical sense of each contributor working on an assigned section of a project.
Undoubtedly, the core platform requires coordination, but extensions and
modifications can happen without needing to transform the whole project.294

290Apache developer mailing list, Rob Harthill, Subject: Re: Shambhala, 30 June 1995, 14:50 MDT.
291Apache developer mailing list, Rob Harthill, Subject: Re: Shambhala, 30 June 1995, 16:48 GMT.
292Gabriella Coleman captures this nicely in her discussion of the tension between the individual
virtuosity of the hacker and the corporate populism of groups like Apache or, in her example, the Debian
distribution of Linux. See Coleman, The Social Construction of Freedom.
293Apache developer mailing list, Robert S. Thau, Subject: Re: Shambhala, 1 July 1995, 14:42 EDT.
294A slightly different explanation of the role of modularity is discussed in Steven Weber, The Success of
Open Source, 173-75.

Two Bits Christopher M. Kelty 181

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Shambhala represents a certain triumph of the ”shut up and show me the code”
aesthetic: Thaus ”modesty” is instead a recognition that he should be quiet until it
”works well enough to talk about,” whereas Harthills response is frustration that no
one has talked about what Thau was planning to do before it was even attempted.
The consequence was that Harthills work seemed to be in vain, replaced by the work
of a more virtuosic hackers demonstration of a superior direction.
In the case of Apache one can see how coordination in Free Software is not just an 683

afterthought or a necessary feature of distributed work, but is in fact at the core of
software production itself, governing the norms and forms of life that determine what
will count as good software, how it will progress with respect to a context and [pg229]

background, and how people will be expected to interact around the topic of design
decisions. The privileging of adaptability brings with it a choice in the mode of
collaboration: it resolves the tension between the agonistic competitive creation of
software, such as Robert Thaus creation of Shambhala, and the need for collective
coordination of complexity, such as Harthills plea for collaboration to reduce
duplicated or unnecessary work.

Check Out and Commit 684

The technical and social forms that Linux and Apache take are enabled by the tools 685

they build and use, from bug-tracking tools and mailing lists to the Web servers and
kernels themselves. One such tool plays a very special role in the emergence of these
organizations: Source Code Management systems (SCMs). SCMs are tools for
coordinating people and code; they allow multiple people in dispersed locales to work
simultaneously on the same object, the same source code, without the need for a
central coordinating overseer and without the risk of stepping on each others toes.
The history of SCMsespecially in the case of Linuxalso illustrates the recursive-depth
problem: namely, is Free Software still free if it is created with non-free tools?
SCM tools, like the Concurrent Versioning System (cvs) and Subversion, have become 686

extremely common tools for Free Software programmers; indeed, it is rare to find a
project, even a project conducted by only one individual, which does not make use of
these tools. Their basic function is to allow two or more programmers to work on the
same files at the same time and to provide feedback on where their edits conflict.
When the number of programmers grows large, an SCM can become a tool for
managing complexity. It keeps track of who has ”checked out” files; it enables users
to lock files if they want to ensure that no one else makes changes at the same time;
it can keep track of and display the conflicting changes made by two users to the
same file; it can be used to create ”internal” forks or ”branches” that may be
incompatible with each other, but still allows programmers to try out new things and,
if all goes well, merge the branches into the trunk later on. In sophisticated forms it
can be used to ”animate” successive changes to a piece of code, in order to visualize
its evolution. [pg230]

Beyond mere coordination functions, SCMs are also used as a form of distribution; 687

generally SCMs allow anyone to check out the code, but restrict those who can check
in or ”commit” the code. The result is that users can get instant access to the most

Two Bits Christopher M. Kelty 182

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

up-to-date version of a piece of software, and programmers can differentiate between
stable releases, which have few bugs, and ”unstable” or experimental versions that
are under construction and will need the help of users willing to test and debug the
latest versions. SCM tools automate certain aspects of coordination, not only
reducing the labor involved but opening up new possibilities for coordination.
The genealogy of SCMs can be seen in the example of Ken Thompsons creation of a 688

diff tape, which he used to distribute changes that had been contributed to UNIX.
Where Thompson saw UNIX as a spectrum of changes and the legal department at
Bell Labs saw a series of versions, SCM tools combine these two approaches by
minutely managing the revisions, assigning each change (each diff) a new version
number, and storing the history of all of those changes so that software changes
might be precisely undone in order to discover which changes cause problems.
Written by Douglas McIlroy, ”diff” is itself a piece of software, one of the famed small
UNIX tools that do one thing well. The program diff compares two files, line by line,
and prints out the differences between them in a structured format (showing a series
of lines with codes that indicate changes, additions, or removals). Given two versions
of a text, one could run diff to find the differences and make the appropriate changes
to synchronize them, a task that is otherwise tedious and, given the exactitude of
source code, prone to human error. A useful side-effect of diff (when combined with
an editor like ed or EMACS) is that when someone makes a set of changes to a file and
runs diff on both the original and the changed file, the output (i.e., the changes only)
can be used to reconstruct the original file from the changed file. Diff thus allows for a
clever, space-saving way to save all the changes ever made to a file, rather than
retaining full copies of every new version, one saves only the changes. Ergo, version
control. diffand programs like itbecame the basis for managing the complexity of
large numbers of programmers working on the same text at the same time.
One of the first attempts to formalize version control was Walter Tichys Revision 689

Control System (RCS), from 1985.295 RCS kept track of the changes to different files
using diff and allowed programmers [pg231] to see all of the changes that had been
made to that file. RCS, however, could not really tell the difference between the work
of one programmer and another. All changes were equal, in that sense, and any
questions that might arise about why a change was made could remain
unanswered.
In order to add sophistication to RCS, Dick Grune, at the Vrije Universiteit, 690

Amsterdam, began writing scripts that used RCS as a multi-user, Internet-accessible
version-control system, a system that eventually became the Concurrent Versioning
System. cvs allowed multiple users to check out a copy, make changes, and then
commit those changes, and it would check for and either prevent or flag conflicting
changes. Ultimately, cvs became most useful when programmers could use it
remotely to check out source code from anywhere on the Internet. It allowed people
to work at different speeds, different times, and in different places, without needing a
central person in charge of checking and comparing the changes. cvs created a form
of decentralized version control for very-large-scale collaboration; developers could
work offline on software, and always on the most updated version, yet still be working
295Tichy, ”RCS.”

Two Bits Christopher M. Kelty 183

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

on the same object.
Both the Apache project and the Linux kernel project use SCMs. In the case of Apache 691

the original patch-and-vote system quickly began to strain the patience, time, and
energy of participants as the number of contributors and patches began to grow.
From the very beginning of the project, the contributor Paul Richards had urged the
group to make use of cvs. He had extensive experience with the system in the
Free-BSD project and was convinced that it provided a superior alternative to the
patch-and-vote system. Few other contributors had much experience with it, however,
so it wasnt until over a year after Richards began his admonitions that cvs was
eventually adopted. However, cvs is not a simple replacement for a patch-and-vote
system; it necessitates a different kind of organization. Richards recognized the
trade-off. The patch-and-vote system created a very high level of quality assurance
and peer review of the patches that people submitted, while the cvs system allowed
individuals to make more changes that might not meet the same level of quality
assurance. The cvs system allowed branchesstable, testing, experimentalwith
different levels of quality assurance, while the patch-and-vote system was inherently
directed at one final and stable version. As the case of Shambhala [pg232] exhibited,
under the patch-and-vote system experimental versions would remain unofficial
garage projects, rather than serve as official branches with people responsible for
committing changes.
While SCMs are in general good for managing conflicting changes, they can do so 692

only up to a point. To allow anyone to commit a change, however, could result in a
chaotic mess, just as difficult to disentangle as it would be without an SCM. In
practice, therefore, most projects designate a handful of people as having the right to
”commit” changes. The Apache project retained its voting scheme, for instance, but it
became a way of voting for ”committers” instead for patches themselves. Trusted
committersthose with the mysterious ”good taste,” or technical intuitionbecame the
core members of the group.
The Linux kernel has also struggled with various issues surrounding SCMs and the 693

management of responsibility they imply. The story of the so-called VGER tree and
the creation of a new SCM called Bitkeeper is exemplary in this respect.296 By 1997,
Linux developers had begun to use cvs to manage changes to the source code,
though not without resistance. Torvalds was still in charge of the changes to the
official stable tree, but as other ”lieutenants” came on board, the complexity of the
changes to the kernel grew. One such lieutenant was Dave Miller, who maintained a
”mirror” of the stable Linux kernel tree, the VGER tree, on a server at Rutgers. In
September 1998 a fight broke out among Linux kernel developers over two related
issues: one, the fact that Torvalds was failing to incorporate (patch) contributions that
had been forwarded to him by various people, including his lieutenants; and two, as a
result, the VGER cvs repository was no longer in synch with the stable tree
maintained by Torvalds. Two different versions of Linux threatened to emerge.
A great deal of yelling ensued, as nicely captured in Moodys Rebel Code, culminating 694

in the famous phrase, uttered by Larry McVoy: ”Linus does not scale.” The meaning of
296See Steven Weber, The Success of Open Source, 117-19; Moody, Rebel Code, 172-78. See also Shaikh
and Cornford, ”Version Management Tools.”

Two Bits Christopher M. Kelty 184

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

this phrase is that the ability of Linux to grow into an ever larger project with
increasing complexity, one which can handle myriad uses and functions (to ”scale”
up), is constrained by the fact that there is only one Linus Torvalds. By all accounts,
Linus was and is excellent at what he doesbut there is only one Linus. The danger of
this situation is the danger of a fork. A fork would mean one or more new versions
would proliferate under new leadership, a situation much like [pg233] the spread of
UNIX. Both the licenses and the SCMs are designed to facilitate this, but only as a last
resort. Forking also implies dilution and confusioncompeting versions of the same
thing and potentially unmanageable incompatibilities.
The fork never happened, however, but only because Linus went on vacation, 695

returning renewed and ready to continue and to be more responsive. But the crisis
had been real, and it drove developers into considering new modes of coordination.
Larry McVoy offered to create a new form of SCM, one that would allow a much more
flexible response to the problem that the VGER tree represented. However, his
proposed solution, called Bitkeeper, would create far more controversy than the one
that precipitated it.
McVoy was well-known in geek circles before Linux. In the late stages of the 696

open-systems era, as an employee of Sun, he had penned an important document
called ”The Sourceware Operating System Proposal.” It was an internal Sun
Microsystems document that argued for the company to make its version of UNIX
freely available. It was a last-ditch effort to save the dream of open systems. It was
also the first such proposition within a company to ”go open source,” much like the
documents that would urge Netscape to Open Source its software in 1998. Despite
this early commitment, McVoy chose not to create Bitkeeper as a Free Software
project, but to make it quasi-proprietary, a decision that raised a very central
question in ideological terms: can one, or should one, create Free Software using
non-free tools?
On one side of this controversy, naturally, was Richard Stallman and those sharing his 697

vision of Free Software. On the other were pragmatists like Torvalds claiming no goals
and no commitment to ”ideology”only a commitment to ”fun.” The tension laid bare
the way in which recursive publics negotiate and modulate the core components of
Free Software from within. Torvalds made a very strong and vocal statement
concerning this issue, responding to Stallmans criticisms about the use of non-free
software to create Free Software: ”Quite frankly, I dont _want_ people using Linux for
ideological reasons. I think ideology sucks. This world would be a much better place if
people had less ideology, and a whole lot more I do this because its FUN and because
others might find it useful, not because I got religion.”297

Torvalds emphasizes pragmatism in terms of coordination: the right tool for the job is 698

the right tool for the job. In terms of licenses, [pg234] however, such pragmatism does
not play, and Torvalds has always been strongly committed to the GPL, refusing to let
non-GPL software into the kernel. This strategic pragmatism is in fact a recognition of
where experimental changes might be proposed, and where practices are settled.
297Linus Torvalds, ”Re: [PATCH] Remove Bitkeeper Documentation from Linux Tree,” 20 April 2002,
⌜ http://www.uwsg.indiana.edu/hypermail/linux/kernel/0204.2/1018.html ⌟ . Quoted in Shaikh and Cornford, ”Version
Management Tools.”

Two Bits Christopher M. Kelty 185

http://www.uwsg.indiana.edu/hypermail/linux/kernel/0204.2/1018.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

The GPL was a stable document, sharing source code widely was a stable practice,
but coordinating a project using SCMs was, during this period, still in flux, and thus
Bitkeeper was a tool well worth using so long as it remained suitable to Linux
development. Torvalds was experimenting with the meaning of coordination: could a
non-free tool be used to create Free Software?
McVoy, on the other hand, was on thin ice. He was experimenting with the meaning 699

of Free Software licenses. He created three separate licenses for Bitkeeper in an
attempt to play both sides: a commercial license for paying customers, a license for
people who sell Bitkeeper, and a license for ”free users.” The free-user license
allowed Linux developers to use the software for freethough it required them to use
the latest versionand prohibited them from working on a competing project at the
same time. McVoys attempt to have his cake and eat it, too, created enormous
tension in the developer community, a tension that built from 2002, when Torvalds
began using Bitkeeper in earnest, to 2005, when he announced he would stop.
The tension came from two sources: the first was debates among developers 700

addressing the moral question of using non-free software to create Free Software. The
moral question, as ever, was also a technical one, as the second source of tension,
the license restrictions, would reveal.
The developer Andrew Trigdell, well known for his work on a project called Samba and 701

his reverse engineering of a Microsoft networking protocol, began a project to reverse
engineer Bitkeeper by looking at the metadata it produced in the course of being
used for the Linux project. By doing so, he crossed a line set up by McVoys
experimental licensing arrangement: the ”free as long as you dont copy me” license.
Lawyers advised Trigdell to stay silent on the topic while Torvalds publicly berated him
for ”willful destruction” and a moral lapse of character in trying to reverse engineer
Bitkeeper. Bruce Perens defended Trigdell and censured Torvalds for his seemingly
contradictory ethics.298 McVoy never sued Trigdell, and Bitkeeper has limped along as
a commercial project, because, [pg235] much like the EMACS controversy of 1985, the
Bitkeeper controversy of 2005 ended with Torvalds simply deciding to create his own
SCM, called git.
The story of the VGER tree and Bitkeeper illustrate common tensions within recursive 702

publics, specifically, the depth of the meaning of free. On the one hand, there is Linux
itself, an exemplary Free Software project made freely available; on the other hand,
however, there is the ability to contribute to this process, a process that is potentially
constrained by the use of Bitkeeper. So long as the function of Bitkeeper is completely
circumscribedthat is, completely plannedthere can be no problem. However, the
moment one user sees a way to change or improve the process, and not just the
kernel itself, then the restrictions and constraints of Bitkeeper can come into play.
While it is not clear that Bitkeeper actually prevented anything, it is also clear that
developers clearly recognized it as a potential drag on a generalized commitment to
adaptability. Or to put it in terms of recursive publics, only one layer is properly open,
that of the kernel itself; the layer beneath it, the process of its construction, is not
free in the same sense. It is ironic that Torvaldsotherwise the spokesperson for
298Andrew Orlowski, ”Cool it, LinusBruce Perens,” Register, 15 April 2005,
⌜ http://www.theregister.co.uk/2005/04/15/perens_on_torvalds/page2.html ⌟ .

Two Bits Christopher M. Kelty 186

http://www.theregister.co.uk/2005/04/15/perens_on_torvalds/page2.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

antiplanning and adaptabilitywillingly adopted this form of constraint, but not at all
surprising that it was collectively rejected.
The Bitkeeper controversy can be understood as a kind of experiment, a modulation 703

on the one hand of the kinds of acceptable licenses (by McVoy) and on the other of
acceptable forms of coordination (Torvaldss decision to use Bitkeeper). The
experiment was a failure, but a productive one, as it identified one kind of non-free
software that is not safe to use in Free Software development: the SCM that
coordinates the people and the code they contribute. In terms of recursive publics the
experiment identified the proper depth of recursion. Although it might be possible to
create Free Software using some kinds of non-free tools, SCMs are not among them;
both the software created and the software used to create it need to be free.299

The Bitkeeper controversy illustrates again that adaptability is not about radical 704

invention, but about critique and response. Whereas controlled design and
hierarchical planning represent the domain of governancecontrol through goal-setting
and orientation of a collective or a projectadaptability privileges politics, properly
speaking, the ability to critique existing design and to [pg236] propose alternatives
without restriction. The tension between goal-setting and adaptability is also part of
the dominant ideology of intellectual property. According to this ideology, IP laws
promote invention of new products and ideas, but restrict the re-use or
transformation of existing ones; defining where novelty begins is a core test of the
law. McVoy made this tension explicit in his justifications for Bitkeeper: ”Richard
[Stallman] might want to consider the fact that developing new software is extremely
expensive. Hes very proud of the collection of free software, but thats a collection of
re-implementations, but no profoundly new ideas or products. . . . What if the free
software model simply cant support the costs of developing new ideas?”300

Novelty, both in the case of Linux and in intellectual property law more generally, is 705

directly related to the interplay of social and technical coordination: goal direction vs.
adaptability. The ideal of adaptability promoted by Torvalds suggests a radical
alternative to the dominant ideology of creation embedded in contemporary
intellectual-property systems. If Linux is ”new,” it is new through adaptation and the
coordination of large numbers of creative contributors who challenge the ”design” of
an operating system from the bottom up, not from the top down. By contrast, McVoy
represents a moral imagination of design in which it is impossible to achieve novelty
without extremely expensive investment in top-down, goal-directed, unpolitical
designand it is this activity that the intellectual-property system is designed to
reward. Both are engaged, however, in an experiment; both are engaged in ”figuring
out” what the limits of Free Software are.

299Similar debates have regularly appeared around the use of non-free compilers, non-free debuggers,
non-free development environments, and so forth. There are, however, a large number of people who
write and promote Free Software that runs on proprietary operating systems like Macintosh and
Windows, as well as a distinction between tools and formats. So, [pg341] for instance, using Adobe
Photoshop to create icons is fine so long as they are in standard open formats like PNG or JPG, and not
proprietary forms such as GIF or photoshop.
300Quoted in Jeremy Andrews, ”Interview: Larry McVoy,” Kernel Trap, 28 May 2002,
⌜ http://Kerneltrap.org/node/222 ⌟ .

Two Bits Christopher M. Kelty 187

http://Kerneltrap.org/node/222
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Coordination Is Design 706

Many popular accounts of Free Software skip quickly over the details of its 707

mechanism to suggest that it is somehow inevitable or obvious that Free Software
should worka self-organizing, emergent system that manages complexity through
distributed contributions by hundreds of thousands of people. In The Success of Open
Source Steven Weber points out that when people refer to Open Source as a
self-organizing system, they usually mean something more like ”I dont understand
how it works.”301 [pg237]

Eric Raymond, for instance, suggests that Free Software is essentially the emergent, 708

self-organizing result of ”collaborative debugging”: ”Given enough eyeballs, all bugs
are shallow.”302 The phrase implies that the core success of Free Software is the
distributed, isolated, labor of debugging, and that design and planning happen
elsewhere (when a developer ”scratches an itch” or responds to a personal need). On
the surface, such a distinction seems quite obvious: designing is designing, and
debugging is removing bugs from software, and presto!Free Software. At the extreme
end, it is an understanding by which only individual geniuses are capable of planning
and design, and if the initial conditions are properly set, then collective wisdom will fill
in the details.
However, the actual practice and meaning of collective or collaborative debugging is 709

incredibly elastic. Sometimes debugging means fixing an error; sometimes it means
making the software do something different or new. (A common joke, often made at
Microsofts expense, captures some of this elasticity: whenever something doesnt
seem to work right, one says, ”Thats a feature, not a bug.”) Some programmers see a
design decision as a stupid mistake and take action to correct it, whereas others
simply learn to use the software as designed. Debugging can mean something as
simple as reading someone elses code and helping them understand why it does not
work; it can mean finding bugs in someone elses software; it can mean reliably
reproducing bugs; it can mean pinpointing the cause of the bug in the source code; it
can mean changing the source to eliminate the bug; or it can, at the limit, mean
changing or even re-creating the software to make it do something different or
better.303 For academics, debugging can be a way to build a career: ”Find bug. Write
paper. Fix bug. Write paper. Repeat.”304 For commercial software vendors, by
contrast, debugging is part of a battery of tests intended to streamline a
product.
Coordination in Free Software is about adaptability over planning. It is a way of 710

resolving the tension between individual virtuosity in creation and the social benefit
in shared labor. If all software were created, maintained, and distributed only by

301Steven Weber, The Success of Open Source, 132.
302Raymond, The Cathedral and the Bazaar.
303Gabriella Coleman, in ”The Social Construction of Freedom,” provides an excellent example of a
programmers frustration with font-lock in EMACS, something that falls in between a bug and a feature.
The programmers frustration is directed at the stupidity of the design (and implied designers), but his
solution is not a fix, but a work-aroundand it illustrates how debugging does not always imply
collaboration.
304Dan Wallach, interview, 3 October 2003.

Two Bits Christopher M. Kelty 188

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

individuals, coordination would be superfluous, and software would indeed be part of
the domain of poetry. But even the paradigmatic cases of virtuosic creationEMACS by
Richard Stallman, UNIX by Ken Thompson and Dennis Ritchieclearly represent the
need for creative forms [pg238] of coordination and the fundamental practice of reusing,
reworking, rewriting, and imitation. UNIX was not created de novo, but was an
attempt to streamline and rewrite Multics, itself a system that evolved out of Project
MAC and the early mists of time-sharing and computer hacking.305 EMACS was a
reworking of the TECO editor. Both examples are useful for understanding the
evolution of modes of coordination and the spectrum of design and debugging.
UNIX was initially ported and shared through mixed academic and commercial means, 711

through the active participation of computer scientists who both received updates
and contributed fixes back to Thompson and Ritchie. No formal system existed to
manage this process. When Thompson speaks of his understanding of UNIX as a
”spectrum” and not as a series of releases (V1, V2, etc.), the implication is that work
on UNIX was continuous, both within Bell Labs and among its widespread users.
Thompsons use of the diff tape encapsulates the core problem of coordination: how to
collect and redistribute the changes made to the system by its users.
Similarly, Bill Joys distribution of BSD and James Goslings distribution of GOSMACS 712

were both ad hoc, noncorporate experiments in ”releasing early and often.” These
distribution schemes had a purpose (beyond satisfying demand for the software). The
frequent distribution of patches, fixes, and extensions eased the pain of debugging
software and satisfied users demands for new features and extensions (by allowing
them to do both themselves). Had Thompson and Ritchie followed the conventional
corporate model of software production, they would have been held responsible for
thoroughly debugging and testing the software they distributed, and AT&T or Bell
Labs would have been responsible for coming up with all innovations and extensions
as well, based on marketing and product research. Such an approach would have
sacrificed adaptability in favor of planning. But Thompsons and Ritchies model was
different: both the extension and the debugging of software became shared
responsibilities of the users and the developers. Stallmans creation of EMACS
followed a similar pattern; since EMACS was by design extensible and intended to
satisfy myriad unforeseen needs, the responsibility rested on the users to address
those needs, and sharing their extensions and fixes had obvious social benefit.
The ability to see development of software as a spectrum implies more than just 713

continuous work on a product; it means seeing the [pg239] product itself as something
fluid, built out of previous ideas and products and transforming, differentiating into
new ones. Debugging, from this perspective, is not separate from design. Both are
part of a spectrum of changes and improvements whose goals and direction are
governed by the users and developers themselves, and the patterns of coordination
they adopt. It is in the space between debugging and design that Free Software finds
its niche.

Two Bits Christopher M. Kelty 189

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Conclusion: Experiments and Modulations 714

Coordination is a key component of Free Software, and is frequently identified as the 715

central component. Free Software is the result of a complicated story of
experimentation and construction, and the forms that coordination takes in Free
Software are specific outcomes of this longer story. Apache and Linux are both
experimentsnot scientific experiments per se but collective social experiments in
which there are complex technologies and legal tools, systems of coordination and
governance, and moral and technical orders already present.
Free Software is an experimental system, a practice that changes with the results of 716

new experiments. The privileging of adaptability makes it a peculiar kind of
experiment, however, one not directed by goals, plans, or hierarchical control, but
more like what John Dewey suggested throughout his work: the experimental praxis
of science extended to the social organization of governance in the service of
improving the conditions of freedom. What gives this experimentation significance is
the centrality of Free Softwareand specifically of Linux and Apacheto the experimental
expansion of the Internet. As an infrastructure or a milieu, the Internet is changing
the conditions of social organization, changing the relationship of knowledge to
power, and changing the orientation of collective life toward governance. Free
Software is, arguably, the best example of an attempt to make this transformation
public, to ensure that it uses the advantages of adaptability as critique to counter the
power of planning as control. Free Software, as a recursive public, proceeds by
proposing and providing alternatives. It is a bit like Kants version of enlightenment:
insofar as geeks speak (or hack) as scholars, in a public realm, they have a right to
propose criticisms and changes of any sort; as soon as they relinquish [pg240] that
commitment, they become private employees or servants of the sovereign, bound by
conscience and power to carry out the duties of their given office. The constitution of
a public realm is not a universal activity, however, but a historically specific one: Free
Software confronts the specific contemporary technical and legal infrastructure by
which it is possible to propose criticisms and offer alternatives. What results is a
recursive public filled not only with individuals who govern their own actions but also
with code and concepts and licenses and forms of coordination that turn these actions
into viable, concrete technical forms of life useful to inhabitants of the present.

305Mitchell Waldrops The Dream Machine details the family history well.

Two Bits Christopher M. Kelty 190

https://twobits.net
https://kelty.org/

Part III modulations 717

The question cannot be answered by argument. Experimental method means 718

experiment, and the question can be answered only by trying, by organized effort.
The reasons for making the trial are not abstract or recondite. They are found in
the confusion, uncertainty and conflict that mark the modern world. . . . The task
is to go on, and not backward, until the method of intelligence and experimental
control is the rule in social relations and social direction. - john dewey, Liberalism
and Social Action

Two Bits Christopher M. Kelty 191

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

8.”If We Succeed, We Will Disappear” 719

In early 2002, after years of reading and learning about Open Source and Free 720

Software, I finally had a chance to have dinner with famed libertarian, gun-toting,
Open Source-founding impresario Eric Raymond, author of The Cathedral and the
Bazaar and other amateur anthropological musings on the subject of Free Software.
He had come to Houston, to Rice University, to give a talk at the behest of the
Computer and Information Technology Institute (CITI). Visions of a mortal
confrontation between two anthropologists-manqué filled my head. I imagined
explaining point by point why his references to self-organization and evolutionary
psychology were misguided, and how the long tradition of economic anthropology
contradicted basically everything he had to say about gift-exchange. Alas, two things
conspired against this epic, if bathetic, showdown.
First, there was the fact that (as so often happens in meetings among geeks) there 721

was only one woman present at dinner; she was [pg244] young, perhaps unmarried, but
not a studentan interested female hacker. Raymond seated himself beside this
woman, turned toward her, and with a few one-minute-long exceptions proceeded to
lavish her with all of his available attention. The second reason was that I was seated
next to Richard Baraniuk and Brent Hendricks. All at once, Raymond looked like the
past of Free Software, arguing the same arguments, using the same rhetoric of his
online publications, while Baraniuk and Hendricks looked like its future, posing
questions about the transformationthe modulationof Free Software into something
surprising and new.
Baraniuk, a professor of electrical engineering and a specialist in digital signal 722

processing, and Hendricks, an accomplished programmer, had started a project
called Connexions, an ”open content repository of educational materials.” Far more
interesting to me than Raymonds amateur philosophizing was this extant project to
extend the ideas of Free Software to the creation of educational materialstextbooks,
in particular.
Rich and Brent were, by the looks of it, equally excited to be seated next to me, 723

perhaps because I was answering their questions, whereas Raymond was not, or
perhaps because I was a new hire at Rice University, which meant we could talk
seriously about collaboration. Rich and Brent (and Jan Odegard, who, as director of
CITI, had organized the dinner) were keen to know what I could add to help them
understand the ”social” aspects of what they wanted to do with Connexions, and I, in
return, was equally eager to learn how they conceptualized their Free Software-like
project: what had they kept the same and what had they changed in their own
experiment? Whatever they meant by ”social” (and sometimes it meant ethical,
sometimes legal, sometimes cultural, and so on), they were clear that there were
domains of expertise in which they felt comfortable (programming, project
management, teaching, and a particular kind of research in computer science and
electrical engineering) and domains in which they did not (the ”norms” of academic
life outside their disciplines, intellectual-property law, ”culture”). Although I tried to
explain the nature of my own expertise in social theory, philosophy, history, and
ethnographic research, the academic distinctions were far less important than the

Two Bits Christopher M. Kelty 192

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

fact that I could ask detailed and pointed questions about the project, questions that
indicated to them that I must have some kind of stake in the domains that they
needed filledin particular, [pg245] around the question of whether Connexions was the
same thing as Free Software, and what the implications of that might be.
Raymond courted and chattered on, then left, the event of his talk and dinner of 724

fading significance, but over the following weeks, as I caught up with Brent and Rich, I
became (surprisingly quickly) part of their novel experiment.

After Free Software 725

My nonmeeting with Raymond is an allegory of sorts: an allegory of what comes after 726

Free Software. The excitement around that table was not so much about Free
Software or Open Source, but about a certain possibility, a kind of genotypic urge of
which Free Software seemed a fossil phenotype and Connexions a live one. Rich and
Brent were people in the midst of figuring something out. They were engaged in
modulating the practices of Free Software. By modulation I mean exploring in detail
the concrete practicesthe howof Free Software in order to ask what can be changed,
and what cannot, in order to maintain something (openness?) that no one can quite
put his finger on. What drew me immediately to Connexions was that it was related to
Free Software, not metaphorically or ideologically, but concretely, practically, and
experimentally, a relationship that was more about emergence out of than it was
about the reproduction of forms. But the opposition between emergence and
reproduction immediately poses a question, not unlike that of the identity of species
in evolution: if Free Software is no longer software, what exactly is it?
In part III I confront this question directly. Indeed, it was this question that 727

necessitated part II, the analytic decomposition of the practices and histories of Free
Software. In order to answer the question ”Is Connexions Free Software?” (or vice
versa) it was necessary to rethink Free Software as itself a collective, technical
experiment, rather than as an expression of any ideology or culture. To answer yes, or
no, however, merely begs the question ”What is Free Software?” What is the cultural
significance of these practices? The concept of a recursive public is meant to reveal
in part the significance of both Free Software and emergent projects like Connexions;
it is meant to help chart when these emergent projects branch off absolutely (cease
to be public) and when they do not, by [pg246] focusing on how they modulate the five
components that give Free Software its contemporary identity.
Connexions modulates all of the components except that of the movement (there is, 728

as of yet, no real ”Free Textbook” movement, but the ”Open Access” movement is a
close second cousin).306 Perhaps the most complex modulation concerns
coordinationchanges to the practice of coordination and collaboration in
306In January 2005, when I first wrote this analysis, this was true. By April 2006, the Hewlett Foundation
had convened the Open Educational Resources ”movement” as something that would transform the
production and circulation of textbooks like those created by Connexions. Indeed, in Rich Baraniuks
report for Hewlett, the first paragraph reads: ”A grassroots movement is on the verge of sweeping
through the academic world. The open education movement is based on a set of intuitions that are
shared by a remarkably wide range of academics: that knowledge should be free and open to use and
re-use; that collaboration should be easier, not harder; that people should receive credit and kudos for

Two Bits Christopher M. Kelty 193

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

academic-textbook creation in particular, and more generally to the nature of
collaboration and coordination of knowledge in science and scholarship
generally.
Connexions emerged out of Free Software, and not, as one might expect, out of 729

education, textbook writing, distance education, or any of those areas that are
topically connected to pedagogy. That is to say, the people involved did not come to
their project by attempting to deal with a problem salient to education and teaching
as much as they did so through the problems raised by Free Software and the
question of how those problems apply to university textbooks. Similarly, a second
project, Creative Commons, also emerged out of a direct engagement with and
exploration of Free Software, and not out of any legal movement or scholarly
commitment to the critique of intellectual-property law or, more important, out of any
desire to transform the entertainment industry. Both projects are resolutely
committed to experimenting with the given practices of Free Softwareto testing their
limits and changing them where they canand this is what makes them vibrant, risky,
and potentially illuminating as cases of a recursive public.
While both initiatives are concerned with conventional subject areas (educational 730

materials and cultural productions), they enter the fray orthogonally, armed with
anxiety about the social and moral order in which they live, and an urge to transform
it by modulating Free Software. This binds such projects across substantive domains,
in that they are forced to be oppositional, not because they want to be (the
movement comes last), but because they enter the domains of education and the
culture industry as outsiders. They are in many ways intuitively troubled by the
existing state of affairs, and their organizations, tools, legal licenses, and movements
are seen as alternative imaginations of social order, especially concerning creative
freedom and the continued existence of a commons of scholarly knowledge. To the
extent that these projects [pg247] remain in an orthogonal relationship, they are making
a recursive public appearsomething the textbook industry and the entertainment
industry are, by contrast, not at all interested in doing, for obvious financial and
political reasons.

Stories of Connexion 731

Im at dinner again. This time, a windowless hotel conference room in the basement 732

maybe, or perhaps high up in the air. Lawyers, academics, activists, policy experts,
and foundation people are semi-excitedly working their way through the hotels
steam-table fare. Im trying to tell a story to the assembled groupa story that I have
heard Rich Baraniuk tell a hundred timesbut Im screwing it up. Rich always gets
enthusiastic stares of wonder, light-bulbs going off everywhere, a subvocalized ”Aha!”
contributing to education and research; and that concepts and ideas are linked in unusual and surprising
ways and not the simple linear forms that textbooks present. Open education promises to fundamentally
change the way authors, instructors, and students interact worldwide” (Baraniuk and King,
”Connexions”). (In a nice confirmation of just how embedded participation can become in anthropology,
Baraniuk cribbed the second sentence from something I had written two years earlier as part of a
description of what I thought Connexions hoped to achieve.) The ”movement” as such still does not
quite exist, but the momentum for it is clearly part of the actions that Hewlett hopes to achieve.

Two Bits Christopher M. Kelty 194

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

or a vigorous nod. I, on the other hand, am clearly making it too complicated. Faces
and foreheads are squirmed up into lines of failed comprehension, people stare at the
gravy-sodden food theyre soldiering through, weighing the option of taking another
bite against listening to me complicate an already complicated world. I wouldnt be
doing this, except that Rich is on a plane, or in a taxi, delayed by snow or engineers
or perhaps at an eponymous hotel in another city. Meanwhile, our co-organizer Laurie
Racine, has somehow convinced herself that I have the childlike enthusiasm
necessary to channel Rich. Im flattered, but unconvinced. After about twenty minutes,
so is she, and as I try to answer a question, she stops me and interjects, ”Rich really
needs to be here. He should really be telling this story.”
Miraculously, he shows up and, before he can even say hello, is conscripted into 733

telling his story properly. I sigh in relief and pray that Ive not done any irreparable
damage and that I can go back to my role as straight man. I can let the superaltern
speak for himself. The downside of participant observation is being asked to
participate in what one had hoped first of all to observe. I do know the storyI have
heard it a hundred times. But somehow what I hear, ears tuned to academic
questions and marveling at some of the stranger claims he makes, somehow this is
not the ear for enlightenment that his practiced and boyish charm delivers to those
hearing it for the first time; it is instead an ear tuned to questions [pg248] of why: why
this project? Why now? And even, somewhat convolutedly, why are people so
fascinated when he tells the story? How could I tell it like Rich?
Rich is an engineer, in particular, a specialist in Digital Signal Processing (DSP). DSP is 734

the science of signals. It is in everything, says Rich: your cell phones, your cars, your
CD players, all those devices. It is a mathematical discipline, but it is also an intensely
practical one, and its connected to all kinds of neighboring fields of knowledge. It is
the kind of discipline that can connect calculus, bioinformatics, physics, and music.
The statistical and analytical techniques come from all sorts of research and end up in
all kinds of interesting devices. So Rich often finds himself trying to teach students to
make these kinds of connectionsto understand that a Fourier transform is not just
another chapter in calculus but a tool for manipulating signals, whether in
bioinformatics or in music.
Around 1998 or 1999, Rich decided that it was time for him to write a textbook on 735

DSP, and he went to the dean of engineering, Sidney Burris, to tell him about the idea.
Burris, who is also a DSP man and longtime member of the Rice University
community, said something like, ”Rich, why dont you do something useful?” By which
he meant: there are a hundred DSP textbooks out there, so why do you want to write
the hundred and first? Burris encouraged Rich to do something bigger, something
ambitious enough to put Rice on the map. I mention this because it is important to
note that even a university like Rice, with a faculty and graduate students on par with
the major engineering universities of the country, perceives that it gets no respect.
Burris was, and remains, an inveterate supporter of Connexions, precisely because it
might put Rice ”in the history books” for having invented something truly novel.
At about the same time as his idea for a textbook, Richs research group was switching 736

over to Linux, and Rich was first learning about Open Source and the emergence of a
fully free operating system created entirely by volunteers. It isnt clear what Richs

Two Bits Christopher M. Kelty 195

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

aha! moment was, other than simply when he came to an understanding that such a
thing as Linux was actually possible. Nonetheless, at some point, Rich had the idea
that his textbook could be an Open Source textbook, that is, a textbook created not
just by him, but by DSP researchers all over the world, and made available to
everyone to make use of and modify and improve as they saw fit, just like Linux.
Together with Brent Hendricks, Yan David Erlich, [pg249] and Ross Reedstrom, all of
whom, as geeks, had a deep familiarity with the history and practices of Free and
Open Source Software, Rich started to conceptualize a system; they started to think
about modulations of different components of Free and Open Source Software. The
idea of a Free Software textbook repository slowly took shape.
Thus, Connexions: an ”open content repository of high-quality educational materials.” 737

These ”textbooks” very quickly evolved into something else: ”modules” of content,
something that has never been sharply defined, but which corresponds more or less
to a small chunk of teachable information, like two or three pages in a textbook. Such
modules are much easier to conceive of in sciences like mathematics or biology, in
which textbooks are often multiauthored collections, finely divided into short chapters
with diagrams, exercises, theorems, or programs. Modules lend themselves much
less well to a model of humanities or social-science scholarship based in reading
texts, discussion, critique, and comparisonand this bias is a clear reflection of what
Brent, Ross, and Rich knew best in terms of teaching and writing. Indeed, the projects
frequent recourse to the image of an assembly-line model of knowledge production
often confirms the worst fears of humanists and educators when they first encounter
Connexions. The image suggests that knowledge comes in prepackaged and
colorfully branded tidbits for the delectation of undergrads, rather than characterizing
knowledge as a state of being or as a process.
The factory image (figure 7) is a bit misleading. Richs and Brents imaginations are in 738

fact much broader, which shows whenever they demo the project, or give a talk, or
chat at a party about it. Part of my failure to communicate excitement when I tell the
story of Connexions is that I skip the examples, which is where Rich starts: what if, he
says, you are a student taking Calculus 101 and, at the same time, Intro to Signals
and Systemsno one is going to explain to you how Fourier transforms form a bridge,
or connection, between them. ”Our brains arent organized in linear,
chapter-by-chapter ways,” Rich always says, ”so why are our textbooks?” How can
we give students a way to see the connection between statistics and genetics,
between architecture and biology, between intellectual-property law and chemical
engineering? Rich is always looking for new examples: a music class for kids that
uses information from physics, or vice versa, for instance. Richs great hope is that the
[pg250] [pg251] more modules there are in the Connexions commons, the more fantastic
and fascinating might be the possibilities for such noveland naturalconnections.
2bits_08_07-100.png,w530h827 [* The Connexions textbook as a factory. Illustration 739

by Jenn Drummond, Ross Reedstrom, Max Starkenberg, and others, 1999-2004. Used
with permission.]
Free Softwareand, in particular, Open Source in the guise of ”self-organizing” 740

distributed systems of coordinationprovide a particular promise of meeting the
challenges of teaching and learning that Rich thinks we face. Richs commitment is

Two Bits Christopher M. Kelty 196

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

not to a certain kind of pedagogical practice, but to the ”social” or ”community”
benefits of thousands of people working ”together” on a textbook. Indeed,
Connexions did not emerge out of education or educational technology; it was not
aligned with any particular theory of learning (though Rich eventually developed a
rhetoric of linked, networked, connected knowledgehence the name Connexionsthat
he uses often to sell the project). There is no school of education at Rice, nor a
particular constituency for such a project (teacher-training programs, say, or
administrative requirements for online education). What makes Richs sell even harder
is that the project emerged at about the same time as the high-profile failure of
dotcom bubble-fueled schemes to expand university education into online education,
distance education, and other systems of expanding the paying student body without
actually inviting them onto campus. The largest of these failed experiments by far
was the project at Columbia, which had reached the stage of implementation at the
time the bubble burst in 2000.307

Thus, Rich styled Connexions as more than just a factory of knowledgeit would be a 741

community or culture developing richly associative and novel kinds of textbooksand
as much more than just distance education. Indeed, Connexions was not the only
such project busy differentiating itself from the perceived dangers of distance
education. In April 2001 MIT had announced that it would make the content of all of
its courses available for free online in a project strategically called OpenCourseWare
(OCW). Such news could only bring attention to MIT, which explicitly positioned the
announcement as a kind of final death blow to the idea of distance education, by
saying that what students pay $35,000 and up for per year is not ”knowledge”which
is freebut the experience of being at MIT. The announcement created pure profit from
the perspective of MITs reputation as a generator and disseminator of scientific
knowledge, but the project did not emerge directly out of an interest in mimicking the
success of Open Source. That angle was [pg252] provided ultimately by the
computer-science professor Hal Abelson, whose deep understanding of the history
and growth of Free Software came from his direct involvement in it as a long-standing
member of the computer-science community at MIT. OCW emerged most proximately
from the strange result of a committee report, commissioned by the provost, on how
MIT should position itself in the ”distance/e-learning” field. The surprising response:
dont do it, give the content away and add value to the campus teaching and research
experience instead.308

OCW, Connexions, and distance learning, therefore, while all ostensibly interested in 742

combining education with the networks and software, emerged out of different
demands and different places. While the profit-driven demand of distance learning
fueled many attempts around the country, it stalled in the case of OCW, largely
because the final MIT Council on Educational Technology report that recommended
OCW was issued at the same time as the first plunge in the stock market (April 2000).
Such issues were not a core factor in the development of Connexions, which is not to
307See Chris Beam, ”Fathom.com Shuts Down as Columbia Withdraws,” Columbia Spectator, 27 January
2003, ⌜ http://www.columbiaspectator.com/ ⌟ . Also see David Nobles widely read critique, ”Digital Diploma
Mills.”
308”Provost Announces Formation of Council on Educational Technology,” MIT Tech Talk, 29 September
1999, ⌜ http://web.mit.edu/newsoffice/1999/council-0929.html ⌟ .

Two Bits Christopher M. Kelty 197

http://www.columbiaspectator.com/
http://web.mit.edu/newsoffice/1999/council-0929.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

say that the problems of funding and sustainability have not always been important
concerns, only that genesis of the project was not at the administrative level or due
to concerns about distance education. For Rich, Brent, and Ross the core commitment
was to openness and to the success of Open Source as an experiment with massive,
distributed, Internet-based, collaborative production of softwaretheir commitment to
this has been, from the beginning, completely and adamantly unwavering.
Neverthless, the project has involved modulations of the core features of Free
Software. Such modulations depend, to a certain extent, on being a project that
emerges out of the ideas and practices of Free Software, rather than, as in the case of
OCW, one founded as a result of conflicting goals (profit and academic freedom) and
resulting in a strategic use of public relations to increase the symbolic power of the
university over its fiscal growth.
When Rich recounts the story of Connexions, though, he doesnt mention any of this 743

background. Instead, like a good storyteller, he waits for the questions to pose
themselves and lets his demonstration answer them. Usually someone asks, ”How is
Connexions different from OCW?” And, every time, Rich says something similar:
Connexions is about ”communities,” about changing the way scholars collaborate and
create knowledge, whereas OCW is simply [pg253] an attempt to transfer existing
courses to a Web format in order to make the content of those courses widely
available. Connexions is a radical experiment in the collaborative creation of
educational materials, one that builds on the insights of Open Source and that
actually encompasses the OCW project. In retrospective terms, it is clear that OCW
was interested only in modulating the meaning of source code and the legal license,
whereas Connexions seeks also to modulate the practice of coordination, with respect
to academic textbooks.
Richs story of the origin of Connexions usually segues into a demonstration of the 744

system, in which he outlines the various technical, legal, and educational concepts
that distinguish it. Connexions uses a standardized document format, the eXtensible
Mark-up Language (XML), and a Creative Commons copyright license on every
module; the Creative Commons license allows people not only to copy and distribute
the information but to modify it and even to use it for commercial gain (an issue that
causes repeated discussion among the team members). The material ranges from
detailed explanations of DSP concepts (naturally) to K-12 music education (the most
popular set of modules). Some contributors have added entire courses; others have
created a few modules here and there. Contributors can set up workgroups to
manage the creation of modules, and they can invite other users to join. Connexions
uses a version-control system so that all of the changes are recorded; thus, if a
module used in one class is changed, the person using it for another class can
continue to use the older version if they wish. The number of detailed and clever
solutions embodied in the system never ceases to thoroughly impress anyone who
takes the time to look at it.
But what always animates people is the idea of random and flexible connection, the 745

idea that a textbook author might be able to build on the work of hundreds of others
who have already contributed, to create new classes, new modules, and creative
connections between them, or surprising juxtapositionsfrom the biologist teaching a

Two Bits Christopher M. Kelty 198

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

class on bioinformatics who needs to remind students of certain parts of calculus
without requiring a whole course; to the architect who wants a studio to study
biological form, not necessarily in order to do experiments in biology, but to
understand buildings differently; to the music teacher who wants students to
understand just enough physics to get the concepts of pitch and [pg254] timbre; to or
the physicist who needs a concrete example for the explanation of waves and
oscillation.
The idea of such radical recombinations is shocking for some (more often for 746

humanities and social-science scholars, rather than scientists or engineers, for
reasons that clearly have to do with an ideology of authentic and individualized
creative ability). The questions that resultregarding copyright, plagiarism, control,
unauthorized use, misuse, misconstrual, misreading, defamation, and so ongenerally
emerge with surprising force and speed. If Rich were trying to sell a version of
”distance learning,” skepticism and suspicion would quickly overwhelm the project;
but as it is, Connexions inverts almost all of the expectations people have developed
about textbooks, classroom practice, collaboration, and copyright. More often than
not people leave the discussion convertedno doubt helped along by Richs storytelling
gift.

Modulations: From Free Software to Connexions 747

Connexions surprises people for some of the same reasons as Free Software surprises 748

people, emerging, as it does, directly out of the same practices and the same
components. Free Software provides a template made up of the five components:
shared source code, a concept of openness, copyleft licenses, forms of coordination,
and a movement or ideology. Connexions starts with the idea of modulating a shared
”source code,” one that is not software, but educational textbook modules that
academics will share, port, and fork. The experiment that results has implications for
the other four components as well. The implications lead to new questions, new
constraints, and new ideas.
The modulation of source code introduces a specific and potentially confusing 749

difference from Free Software projects: Connexions is both a conventional Free
Software project and an unconventional experiment based on Free Software. There is,
of course, plenty of normal source code, that is, a number of software components
that need to be combined in order to allow the creation of digital documents (the
modules) and to display, store, transmit, archive, and measure the creation of
modules. The creation and management of this software is expected to function more
or less like all Free Software projects: it is licensed using Free Software licenses, it is
[pg255] built on open standards of various kinds, and it is set up to take contributions
from other users and developers. The software system for managing modules is itself
built on a variety of other Free Software components (and a commitment to using
only Free Software). Connexions has created various components, which are either
released like conventional Free Software or contributed to another Free Software
project. The economy of contribution and release is a complex one; issues of support
and maintenance, as well as of reputation and recognition, figure into each decision.

Two Bits Christopher M. Kelty 199

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Others are invited to contribute, just as they are invited to contribute to any Free
Software project.309

At the same time, there is ”content,” the ubiquitous term for digital creations that are 750

not software. The creation of content modules, on the other hand (which the software
system makes technically possible), is intended to function like a Free Software
project, in which, for instance, a group of engineering professors might get together
to collaborate on pieces of a textbook on DSP. The Connexions project does not
encompass or initiate such collaborations, but, rather, proceeds from the assumption
that such activity is already happening and that Connexions can provide a kind of
alternative platforman alternative infrastructure evenwhich textbook-writing
academics can make use of instead of the current infrastructure of publishing. The
current infrastructure and technical model of textbook writing, this implies, is one
that both prevents people from taking advantage of the Open Source model of
collaborative development and makes academic work ”non-free.” The shared objects
of content are not source code that can be compiled, like source code in C, but
documents marked up with XML and filled with ”educational” content, then
”displayed” either on paper or onscreen.
The modulated meaning of source code creates all kinds of new questionsspecifically 751

with respect to the other four components. In terms of openness, for instance,
Connexions modulates this component very little; most of the actors involved are
devoted to the ideals of open systems and open standards, insofar as it is a Free
Software project of a conventional type. It builds on UNIX (Linux) and the Internet, and
the project leaders maintain a nearly fanatical devotion to openness at every level:
applications, programming languages, standards, protocols, mark-up languages,
interface tools. Every place where there is an open (as opposed to a [pg256] proprietary)
solutionthat choice trumps all others (with one noteworthy exception).310 James
Boyle recently stated it well: ”Wherever possible, design the system to run with open
content, on open protocols, to be potentially available to the largest possible number
of users, and to accept the widest possible range of experimental modifications from
users who can themselves determine the development of the technology.”311

With respect to content, the devotion to openness is nearly identical, because 752

conventional textbook publishers ”lock in” customers (students) through the creation
of new editions and useless ”enhanced” content, which jacks up prices and makes it
difficult for educators to customize their own courses. ”Openness” in this sense
309The software consists of a collection of different Open Source Software cobbled together to provide
the basic platform (the Zope and Plone content-management frameworks, the PostGresQL database, the
python programming language, and the cvs version-control software).
310The most significant exception has been the issue of tools for authoring content in XML. For most of
the life of the Connexions project, the XML mark-up language has been well-defined and clear, but there
has been no way to write a module in XML, short of directly writing the text and the tags in a text editor.
For all but a very small number of possible users, this feels too much like programming, and they
experience it as too frustrating to be worth it. The solution (albeit temporary) was to encourage users to
make use of a proprietary XML editor (like a word processor, but capable of creating XML content).
Indeed, the Connexions projects devotion to openness was tested by one of the most important
decisions its participants made: to pursue the creation of an Open Source XML text editor in order to
provide access to completely open tools for creating completely open content.
311Boyle, ”Mertonianism Unbound,” 14.

Two Bits Christopher M. Kelty 200

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

trades on the same reasoning as it did in the 1980s: the most important aspect of the
project is the information people create, and any proprietary system locks up content
and prevents people from taking it elsewhere or using it in a different context.
Indeed, so firm is the commitment to openness that Rich and Brent often say 753

something like, ”If we are successful, we will disappear.” They do not want to become
a famous online textbook publisher; they want to become a famous publishing
infrastructure. Being radically open means that any other competitor can use your
systembut it means they are using your system, and this is the goal. Being open
means not only sharing the ”source code” (content and modules), but devising ways
to ensure the perpetual openness of that content, that is, to create a recursive public
devoted to the maintenance and modifiability of the medium or infrastructure by
which it communicates. Openness trumps ”sustainability” (i.e., the self-perpetuation
of the financial feasibility of a particular organization), and where it fails to, the
commitment to openness has been compromised.
The commitment to openness and the modulation of the meaning of source code thus 754

create implications for the meaning of Free Software licenses: do such licenses cover
this kind of content? Are new licenses necessary? What should they look like?
Connexions was by no means the first project to stimulate questions about the
applicability of Free Software licenses to texts and documents. In the case of EMACS
and the GPL, for example, Richard Stallman had faced the problem of licensing the
manual at the same time as the source code for the editor. Indeed, such issues would
ultimately result in a GNU Free Documentation License intended narrowly to [pg257]

cover software manuals. Stallman, due to his concern, had clashed during the 1990s
with Tim OReilly, publisher and head of OReilly Press, which had long produced books
and manuals for Free Software programs. OReilly argued that the principles reflected
in Free Software licenses should not be applied to instructional books, because such
books provided a service, a way for more people to learn how to use Free Software,
and in turn created a larger audience. Stallman argued the opposite: manuals, just
like the software they served, needed to be freely modifiable to remain useful.
By the late 1990s, after Free Software and Open Source had been splashed across the 755

headlines of the mainstream media, a number of attempts to create licenses modeled
on Free Software, but applicable to other things, were under way. One of the earliest
and most general was the Open Content License, written by the
educational-technology researcher David Wiley. Wileys license was intended for use
on any kind of content. Content could include text, digital photos, movies, music, and
so on. Such a license raises new issues. For example, can one designate some parts
of a text as ”invariant” in order to prevent them from being changed, while allowing
other parts of the text to be changed (the model eventually adopted by the GNU Free
Documentation License)? What might the relationship between the ”original” and the
modified version be? Can one expect the original author to simply incorporate
suggested changes? What kinds of forking are possible? Where do the ”moral rights”
of an author come into play (regarding the ”integrity” of a work)?
At the same time, the modulation of source code to include academic textbooks has 756

extremely complex implications for the meaning and context of coordination:
scholars do not write textbooks like programmers write code, so should they

Two Bits Christopher M. Kelty 201

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

coordinate in the same ways? Coordination of a textbook or a course in Connexions
requires novel experiments in textbook writing. Does it lend itself to academic styles
of work, and in which disciplines, for what kinds of projects? In order to cash in on the
promise of distributed, collaborative creation, it would be necessary to find ways to
coordinate scholars.
So, when Rich and Brent recognized in me, at dinner, someone who might know how 757

to think about these issues, they were acknowledging that the experiment they had
started had created a certain turbulence in their understanding of Free Software and,
[pg258] in turn, a need to examine the kinds of legal, cultural, and social practices that
would be at stake.312

Modulations: From Connexions to Creative Commons 758

Im standing in a parking lot in 100 degree heat and 90 percent humidity. It is spring in 759

Houston. I am looking for my car, and I cannot find it. James Boyle, author of
Shamans, Software, and Spleens and distinguished professor of law at Duke
University, is standing near me, staring at me, wearing a wool suit, sweating and
watching me search for my car under the blazing sun. His look says simply, ”If I dont
disembowel you with my Palm Pilot stylus, I am going to relish telling this humiliating
story to your friends at every opportunity I can.” Boyle is a patient man, with the kind
of arch Scottish humor that can make you feel like his best friend, even as his stories
of the folly of man unfold with perfect comic pitch and turn out to be about you.
Having laughed my way through many an uproarious tale of the foibles of my fellow
creatures, I am aware that I have just taken a seat among them in Boyles theater of
human weakness. I repeatedly press the panic button on my key chain, in the hopes
that I am near enough to my car that it will erupt in a frenzy of honking and flashing
that will end the humiliation.
The day had started well. Boyle had folded himself into my Volkswagen (he is tall), 760

and we had driven to campus, parked the car in what no doubt felt like a memorable
space at 9 A.M., and happily gone to the scheduled meetingonly to find that it had
been mistakenly scheduled for the following day. Not my fault, though now, certainly,
my problem. The ostensible purpose of Boyles visit was to meet the Connexions team
and learn about what they were doing. Boyle had proposed the visit himself, as he
was planning to pass through Houston anyway. I had intended to pester him with
questions about the politics and possibilities of licensing the content in Connexions
and with comparisons to MITs OCW and other such commons projects that Boyle
knew of.
Instead of attending the meeting, I took him back to my office, where I learned more 761

about why he was interested in Connexions. Boyles interest was not entirely altruistic

312The movement is the component that remains unmodulated: there is no ”free textbook” movement
associated with Connexions, even though many of the same arguments that lead to a split between Free
Software and Open Source occur here: the question of whether the term free is confusing, for example,
or the role of for-profit publishers or textbook companies. In the end, most (though not all) of the
Connexions staff and many of its users are content to treat it as a useful tool for composing novel kinds
of digital educational materialnot as a movement for the liberation of educational content.

Two Bits Christopher M. Kelty 202

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

(nor was it designed to spend valuable quarter hours standing in a scorched parking
lot as I looked for my subcompact car). What interested Boyle was finding [pg259] a
constituency of potential users for Creative Commons, the nonprofit organization he
was establishing with Larry Lessig, Hal Abelson, Michael Carroll, Eric Eldred, and
otherslargely because he recognized the need for a ready constituency in order to
make Creative Commons work. The constituency was needed both to give the project
legitimacy and to allow its founders to understand what exactly was needed, legally
speaking, for the creation of a whole new set of Free Software-like licenses.
Creative Commons, as an organization and as a movement, had been building for 762

several years. In some ways, Creative Commons represented a simple modulation of
the Free Software license: a broadening of the licenses concept to cover other types
of content. But the impetus behind it was not simply a desire to copy and extend Free
Software. Rather, all of the people involved in Creative Commons were those who had
been troubling issues of intellectual property, information technology, and notions of
commons, public domains, and freedom of information for many years. Boyle had
made his name with a book on the construction of the information society by its legal
(especially intellectual property) structures. Eldred was a publisher of public-domain
works and the lead plaintiff in a court case that went to the Supreme Court in 2002 to
determine whether the recent extension of copyright term limits was constitutional.
Abelson was a computer scientist with an active interest in issues of privacy, freedom,
and law ”on the electronic frontier.” And Larry Lessig was originally interested in
constitutional law, a clerk for Judge Richard Posner, and a self-styled cyberlaw scholar,
who was, during the 1990s, a driving force for the explosion of interest in cyberlaw,
much of it carried out at the Berkman Center for Internet and Society at Harvard
University.
With the exception of Abelsonwho, in addition to being a famous computer scientist, 763

worked for years in the same building that Richard Stallman camped out in and
chaired the committee that wrote the report recommending OCWnone of the
members of Creative Commons cut their teeth on Free Software projects (they were
lawyers and activists, primarily) and yet the emergence of Open Source into the
public limelight in 1998 was an event that made more or less instant and intuitive
sense to all of them. During this time, Lessig and members of the Berkman Center
began an ”open law” project designed to mimic the Internet-based collaboration of
the Open Source project among lawyers who might want to [pg260] contribute to the
Eldred case. Creative Commons was thus built as much on a commitment to a notion
of collaborative creationthe use of the Internet especiallybut more generally on the
ability of individuals to work together to create new things, and especially to
coordinate the creation of these things by the use of novel licensing agreements.
Creative Commons provided more than licenses, though. It was part of a social 764

imaginary of a moral and technical order that extended beyond software to include
creation of all kinds; notions of technical and moral freedom to make use of ones own
”culture” became more and more prominent as Larry Lessig became more and more
involved in struggles with the entertainment industry over the ”control of culture.”
But for Lessig, Creative Commons was a fall-back option; the direct route to a
transformation of the legal structure of intellectual property was through the Eldred

Two Bits Christopher M. Kelty 203

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

case, a case that built huge momentum throughout 2001 and 2002, was granted cert
by the Supreme Court, and was heard in October of 2002. One of the things that
made the case remarkable was the series of strange bedfellows it produced; among
the economists and lawyers supporting the repeal of the 1998 ”Sonny Bono”
Copyright Term Extension Act were the arch free-marketeers and Nobel Prize winners
Milton Friedman, James Buchanan, Kenneth Arrow, Ronald Coase, and George Akerlof.
As Boyle pointed out in print, conservatives and liberals and libertarians all have
reasons to be in favor of scaling back copyright expansion.313 Lessig and his team
lost the case, and the Supreme Court essentially affirmed Congresss interpretation of
the Constitution that ”for limited times” meant only that the time period be limited,
not that it be short.
Creative Commons was thus a back-door approach: if the laws could not be changed, 765

then people should be given the tools they needed to work around those laws.
Understanding how Creative Commons was conceived requires seeing it as a
modulation of both the notion of ”source code” and the modulation of ”copyright
licenses.” But the modulations take place in that context of a changing legal system
that was so unfamiliar to Stallman and his EMACS users, a legal system responding to
new forms of software, networks, and devices. For instance, the changes to the
Copyright Act of 1976 created an unintended effect that Creative Commons would
ultimately seize on. By eliminating the requirement to register copyrighted works
(essentially granting copyright as soon as the [pg261] work is ”fixed in a tangible
medium”), the copyright law created a situation wherein there was no explicit way in
which a work could be intentionally placed in the public domain. Practically speaking
an author could declare that a work was in the public domain, but legally speaking
the risk would be borne entirely by the person who sought to make use of that work:
to copy it, transform it, sell it, and so on. With the explosion of interest in the Internet,
the problem ramified exponentially; it became impossible to know whether someone
who had placed a text, an image, a song, or a video online intended for others to
make use of iteven if the author explicitly declared it ”in the public domain.” Creative
Commons licenses were thus conceived and rhetorically positioned as tools for
making explicit exactly what uses could be made of a specific work. They protected
the rights of people who sought to make use of ”culture” (i.e., materials and ideas
and works they had not authored), an approach that Lessig often summed up by
saying, ”Culture always builds on the past.”
The background to and context of the emergence of Creative Commons was of course 766

much more complicated and fraught. Concerns ranged from the plights of university
libraries with regard to high-priced journals, to the problem of documentary
filmmakers unable to afford, or even find the owners of, rights to use images or
snippets in films, to the high-profile fights over online music trading, Napster, and the
RIAA. Over the course of four years, Lessig and the other founders of Creative
Commons would address all of these issues in books, in countless talks and
presentations and conferences around the world, online and off, among audiences
ranging from software developers to entrepreneurs to musicians to bloggers to
scientists.
313Boyle, ”Conservatives and Intellectual Property.”

Two Bits Christopher M. Kelty 204

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Often, the argument for Creative Commons draws heavily on the concept of culture 767

besieged by the content industries. A story which Lessig enjoys tellingone that I heard
on several occasions when I saw him speak at conferenceswas that of Mickey Mouse.
An interesting, quasi-conspiratorial feature of the twentieth-century expansion of
intellectual-property law is that term limits seem to have been extended right around
the time Mickey Mouse was about to become public property. True or not, the point
Lessig likes to make is that the Mouse is not the de novo creation of the mind of Walt
Disney that intellectual-property law likes to pretend it is, but built on the past of
culture, in particular, on Steamboat Willie, [pg262] Charlie Chaplin, Krazy Kat, and other
such characters, some as inspiration, some as explicit material. The greatness in
Disneys creation comes not from the mind of Disney, but from the culture from which
it emerged. Lessig will often illustrate this in videos and images interspersed with
black-typewriter-font-bestrewn slides and a machine-gun style that makes you think
hes either a beat-poet manqué or running for office, or maybe both.
Other examples of intellectual-property issues fill the books and talks of Creative 768

Commons advocates, stories of blocked innovation, stifled creativity, andthe scariest
point of all (at least for economist-lawyers)inefficiency due to over-expansive
intellectual-property laws and overzealous corporate lawyer-hordes.314 Lessig often
preaches to the converted (at venues like South by Southwest Interactive and the
OReilly Open Source conferences), and the audiences are always outraged at the
state of affairs and eager to learn what they can do. Often, getting involved in the
Creative Commons is the answer. Indeed, within a couple of years, Creative
Commons quickly became more of a movement (a modulation of the Free/Open
Source movement) than an experiment in writing licenses.
On that hot May day in 2002, however, Creative Commons was still under 769

development. Later in the day, Boyle did get a chance to meet with the Connexions
project team members. The Connexions team had already realized that in pursuing
an experimental project in which Free Software was used as a template they created
a need for new kinds of licenses. They had already approached the Rice University
legal counsel, who, though well-meaning, were not grounded at all in a deep
understanding of Free Software and were thus naturally suspicious of it. Boyles
presence and his detailed questions about the project were like a revelationa
revelation that there were already people out there thinking about the very problem
the Connexions team faced and that the team would not need to solve the problem
themselves or make the Rice University legal counsel write new open-content
licenses. What Boyle offered was the possibility for Connexions, as well as for myself
as intermediary, to be involved in the detailed planning and license writing that was
under way at Creative Commons. At the same time, it gave Creative Commons an
extremely willing ”early-adopter” for the license, and one from an important corner of
the world: scholarly research and teaching.315 My task, after recovering from the
314Lessigs output has been prodigious. His books include Code and Other Laws of Cyber Space, The
Future of Ideas, Free Culture, and Code: Version 2.0. He has also written a large number of articles and
is an active blogger (⌜ http://www.lessig.org/blog/ ⌟).
315There were few such projects under way, though there were many in the planning stages. Within a
year, the Public Library of Science had launched itself, spearheaded by Harold Varmus, the former
director of the National Institutes of Health. At the time, however, the only other large scholarly project

Two Bits Christopher M. Kelty 205

http://www.lessig.org/blog/
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

[pg263] shame of being unable to find my car, was to organize a workshop in August at
which members of Creative Commons, Connexions, MITs OCW, and any other such
projects would be invited to talk about license issues.

Participant Figuring Out 770

The workshop I organized in August 2002 was intended to allow Creative Commons, 771

Connexions, and MITs OCW project to try to articulate what each might want from the
other. It was clear what Creative Commons wanted: to convince as many people as
possible to use their licenses. But what Connexions and OCW might have wanted,
from each other as well as from Creative Commons, was less clear. Given the different
goals and trajectories of the two projects, their needs for the licenses differed in
substantial waysenough so that the very idea of using the same license was, at least
temporarily, rendered impossible by MIT. While OCW was primarily concerned about
obtaining permissions to place existing copyrighted work on the Web, Connexions was
more concerned about ensuring that new work remain available and modifiable.
In retrospect, this workshop clarified the novel questions and problems that emerged 772

from the process of modulating the components of Free Software for different
domains, different kinds of content, and different practices of collaboration and
sharing. Since then, my own involvement in this activity has been aimed at resolving
some of these issues in accordance with an imagination of openness, an imagination
of social order, that I had learned from my long experience with geeks, and not from
my putative expertise as an anthropologist or a science-studies scholar. The fiction
that I had at first adoptedthat I was bringing scholarly knowledge to the tablebecame
harder and harder to maintain the more I realized that it was my understanding of
Free Software, gained through ongoing years of ethnographic apprenticeship, that
was driving my involvement.
Indeed, the research I describe here was just barely undertaken as a research project. 773

I could not have conceived of it as a fundable activity in advance of discovering it; I
could not have imagined the course of events in any of the necessary detail to write a
proper proposal for research. Instead, it was an outgrowth of thinking and [pg264]

participating that was already under way, participation that was driven largely by
intuition and a feeling for the problem represented by Free Software. I wanted to help
figure something out. I wanted to see how ”figuring out” happens. While I could have
organized a fundable research project in which I picked a mature Free Software
project, articulated a number of questions, and spent time answering them among
this group, such a project would not have answered the questions I was trying to form
at the time: what is happening to Free Software as it spreads beyond the world of
hackers and software? How is it being modulated? What kinds of limits are breached
when software is no longer the central component? What other domains of thought
and practice were or are ”readied” to receive and understand Free Software and its
implications?316

was the MIT Open Course Ware project, which, although it had already agreed to use Creative Commons
licenses, had demanded a peculiar one-off license.
316The fact that I organized a workshop to which I invited ”informants” and to which I subsequently refer

Two Bits Christopher M. Kelty 206

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

My experiencemy participant-observationwith Creative Commons was therefore 774

primarily done as an intermediary between the Connexions project (and, by
implication, similar projects under way elsewhere) and Creative Commons with
respect to the writing of licenses. In many ways this detailed, specific practice was
the most challenging and illuminating aspect of my participation, but in retrospect it
was something of a red herring. It was not only the modulation of the meaning of
source code and of legal licenses that differentiated these projects, but, more
important, the meaning of collaboration, reuse, coordination, and the cultural practice
of sharing and building on knowledge that posed the trickiest of the problems.
My contact at Creative Commons was not James Boyle or Larry Lessig, but Glenn Otis 775

Brown, the executive director of that organization (as of summer 2002). I first met
Glenn over the phone, as I tried to explain to him what Connexions was about and
why he should join us in Houston in August to discuss licensing issues related to
scholarly material. Convincing him to come to Texas was an easier sell than
explaining Connexions (given my penchant for complicating it unnecessarily), as
Glenn was an Austin native who had been educated at the University of Texas before
heading off to Harvard Law School and its corrupting influence at the hands of Lessig,
Charlie Nesson, and John Perry Barlow.
Glenn galvanized the project. With his background as a lawyer, and especially his 776

keen interest in intellectual-property law, and his long-standing love of music of all
kinds Glenn lent incredible enthusiasm to his work. Prior to joining Creative Commons,
he had [pg265] clerked for the Hon. Stanley Marcus on the Eleventh Circuit Court of
Appeals, in Miami, where he worked on the so-called Wind Done Gone case.317 His
participation in the workshop was an experiment of his own; he was working on a
story that he would tell countless times and which would become one of the core
examples of the kind of practice Creative Commons wanted to encourage.
A New York Times story describes how the band the White Stripes had allowed Steven 777

McDonald, the bassist from Redd Kross, to lay a bass track onto the songs that made
up the album White Blood Cells. In a line that would eventually become a kind of
mantra for Creative Commons, the article stated: ”Mr. McDonald began putting these
copyrighted songs online without permission from the White Stripes or their record
label; during the project, he bumped into Jack White, who gave him spoken assent to

as research might strike some, both in anthropology and outside it, as wrong. But it is precisely the kind
of occasion I would argue has become central to the problematics of method in cultural anthropology
today. On this subject, see Holmes and Marcus, ”Cultures of Expertise and the Management of
Globalization.” Such strategic and seemingly ad hoc participation does not exclude one from attempting
to later disentangle oneself from such participation, in order to comment on the value and significance,
and especially to offer critique. Such is the attempt to achieve objectivity in social science, an
objectivity that goes beyond the basic notions of bias and observer-effect so common in the social
sciences. ”Objectivity” in a broader social sense includes the observation of the conceptual linkages
that both precede such a workshop (constituted the need for it to happen) and follow on it, independent
of any particular meeting. The complexity of mobilizing objectivity in discussions of the value and
significance of social or economic phenomena was well articulated a century ago by Max Weber, and
problems of method in the sense raised by him seem to me to be no less fraught today. See Max Weber,
”Objectivity in the Social Sciences.”
317Suntrust v. Houghton Mifflin Co., U.S. Eleventh Circuit Court of Appeals, 2001, 252 F. 3d 1165.

Two Bits Christopher M. Kelty 207

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

continue. It can be that easy when you skip the intermediaries.”318 The ease with
which these two rockers could collaborate to create a modified work (called, of course,
Redd Blood Cells) without entering a studio, or, more salient, a law firm, was
emblematic of the notion that ”culture builds on the past” and that it need not be
difficult to do so.
Glenn told the story with obvious and animated enthusiasm, ending with the assertion 778

that the White Stripes didnt have to give up all their rights to do this, but they didnt
have to keep them all either; instead of ”All Rights Reserved,” he suggested, they
could say ”Some Rights Reserved.” The story not only manages to capture the
message and aims of Creative Commons, but is also a nice indication of the kind of
dual role that Glenn played, first as a lawyer, and second as a kind of marketing
genius and message man. The possibility of there being more than a handful of
people like Glenn around was not lost on anyone, and his ability to switch between the
language of law and that of nonprofit populist marketing was phenomenal.319

At the workshop, participants had a chance to hash out a number of different issues 779

related to the creation of licenses that would be appropriate to scholarly content:
questions of attribution and commercial use, modification and warranty; differences
between federal copyright law concerning licenses and state law concerning
commercial contracts. The starting point for most people was Free Software, but this
was not the only starting point. There were at least two other broad threads that fed
into the discussion and into the general understanding of the state of affairs facing
projects like [pg266] Connexions or OCW. The first thread was that of digital libraries,
hypertext, human-computer interaction research, and educational technology. These
disciplines and projects often make common reference to two pioneers, Douglas
Englebart and Theodore Nelson, and more proximately to things like Apples
HyperCard program and a variety of experiments in personal academic computing.
The debates and history that lead up to the possibility of Connexions are complex and
detailed, but they generally lack attention to legal detail. With the exception of a
handful of people in library and information science who have made ”digital”
copyright into a subspecialty, few such projects, over the last twenty-five years, have
made the effort to understand, much less incorporate, issues of intellectual property
into their purview.
The other thread combines a number of more scholarly interests that come out of the 780

disciplines of economics and legal theory: institutional economics, critical legal
realism, law and economicsthese are the scholastic designations. Boyle and Lessig,
for example, are both academics; Boyle does not practice law, and Lessig has tried
few cases. Nonetheless, they are both inheritors of a legal and philosophical
pragmatism in which value is measured by the transformation of policy and politics,
not by the mere extension or specification of conceptual issues. Although both have
penned a large number of complicated theoretical articles (and Boyle is well known in

318Neil Strauss, ”An Uninvited Bassist Takes to the Internet,” New York Times, 25 August 2002, sec. 2, 23.
319Indeed, in a more self-reflective moment, Glenn once excitedly wrote to me to explain that what he
was doing was ”code-switching” and that he thought that geeks who constantly involved themselves in
technology, law, music, gaming, and so on would be prime case studies for a code-switching study by
anthropologists.

Two Bits Christopher M. Kelty 208

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

several academic fields for his book Shamans, Software, and Spleens and his work on
authorship and the law), neither, I suspect, would ever sacrifice the chance to make a
set of concrete changes in legal or political practice given the choice. This point was
driven home for me in a conversation I had with Boyle and others at dinner on the
night of the launch of Creative Commons, in December 2002. During that
conversation, Boyle said something to the effect of, ”We actually made something;
we didnt just sit around writing articles and talking about the dangers that face uswe
made something.” He was referring as much to the organization as to the legal
licenses they had created, and in this sense Boyle qualifies very much as a polymathic
geek whose understanding of technology is that it is an intervention into an already
constituted state of affairs, one that demonstrates its value by being created and
installed, not by being assessed in the court of scholarly opinions. [pg267]

Similarly, Lessigs approach to writing and speaking is unabashedly aimed at 781

transforming the way people approach intellectual-property law and, even more
generally, the way they understand the relationship between their rights and their
culture.320 Lessigs approach, at a scholarly level, is steeped in the teachings of law
and economics (although, as he has playfully pointed out, a ”second” Chicago school)
but is focused more on the understanding and manipulation of norms and customs
(”culture”) than on law narrowly conceived.321

Informing both thinkers is a somewhat heterodox economic consensus drawn 782

primarily from institutional economics, which is routinely used to make policy
arguments about the efficacy or efficiency of the intellectual-property system. Both
are also informed by an emerging consensus on treating the public domain in the
same manner in which environmentalists treated the environment in the 1960s.322
These approaches begin with long-standing academic and policy concerns about the
status and nature of ”public goods,” not directly with the problem of Free Software or
the Internet. In some ways, the concern with public goods, commons, the public
domain, and collective action are part of the same ”reorientation of power and
knowledge” I identify throughout Two Bits: namely, the legitimation of the media of
knowledge creation, communication, and circulation. Most scholars of institutional
economics and public policy are, however, just as surprised and bewildered by the
fact of Free Software as the rest of the world has been, and they have sought to
square the existing understanding of public goods and collective action with this new
phenomenon.323

All of these threads form the weft of the experiment to modulate the components of 783

Free Software to create different licenses that cover a broader range of objects and
that deal with people and organizations that are not software developers. Rather than
attempt to carry on arguments at the level of theory, however, my aim in
participating was to see how and what was argued in practice by the people
320See Kelty, ”Punt to Culture.”
321Lessig, ”The New Chicago School.”
322Hence, Boyles ”Second Enclosure Movement” and ”copyright conservancy” concepts (see Boyle, ”The
Second Enclosure Movement”; Bollier, Silent Theft). Perhaps the most sophisticated and compelling
expression of the institutional-economics approach to understanding Free Software is the work of Yochai
Benkler, especially ”Sharing Nicely” and ”Coases Penguin.” See also Benkler, Wealth of Networks.
323Steven Webers The Success of Open Source is exemplary.

Two Bits Christopher M. Kelty 209

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

constructing these experiments, to observe what constraints, arguments, surprises,
or bafflements emerged in the course of thinking through the creation of both new
licenses and a new form of authorship of scholarly material. Like those who study
”science in action” or the distinction between ”law on the books” and ”law in action,”
I sought to observe the realities of a practice [pg268] heavily determined by textual and
epistemological frameworks of various sorts.324

In my years with Connexions I eventually came to see it as something in between a 784

natural experiment and a thought experiment: it was conducted in the open, and it
invited participation from working scholars and teachers (a natural experiment, in
that it was not a closed, scholarly endeavor aimed at establishing specific results, but
an essentially unbounded, functioning system that people could and would come to
depend on), and yet it proceeded by making a series of strategic guesses (a thought
experiment) about three related things: (1) what it is (and will be) possible to do
technically; (2) what it is (and will be) possible to do legally; and (3) what scholars
and educators have done and now do in the normal course of their activities.
At the same time, this experiment gave shape to certain legal questions that I 785

channeled in the direction of Creative Commons, issues that ranged from technical
questions about the structure of digital documents, requirements of attribution, and
URLs to questions about moral rights, rights of disavowal, and the meaning of
”modification.” The story of the interplay between Connexions and Creative
Commons was, for me, a lesson in a particular mode of legal thinking which has been
described in more scholarly terms as the difference between the Roman or, more
proximately, the Napoleonic tradition of legal rationalism and the Anglo-American
common-law tradition.325 It was a practical experience of what exactly the difference
is between legal code and software code, with respect to how those two things can be
made flexible or responsive.

324Carrington and King, ”Law and the Wisconsin Idea.”
325In particular, Glenn Brown suggested Oliver Wendell Holmes as a kind of origin point both for critical
legal realism and for law and economics, a kind of filter through which lawyers get both their Nietzsche
[pg344] and their liberalism (see Oliver Wendell Holmes, ”The Path of the Law”). Glenns opinion was that
what he called ”punting to culture” (by which he meant writing minimalist laws which allow social
custom to fill in the details) descended more or less directly from the kind of legal reasoning embodied
in Holmes: ”Note that [Holmes] is probably best known in legal circles for arguing that questions of
morality be removed from legal analysis and left to the field of ethics. this is what makes him the
godfather of both the posners of the world, and the crits, and the strange hybrids like lessig” (Glenn
Brown, personal communication, 11 August 2003).

Two Bits Christopher M. Kelty 210

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

9.Reuse, Modification, and the Nonexistence of Norms 786

The Connexions project was an experiment in modulating the practices of Free 787

Software. It was not inspired by so much as it was based on a kind of template drawn
from the experience of people who had some experience with Free Software,
including myself. But how exactly do such templates get used? What is traced and
what is changed? In terms of the cultural significance of Free Software, what are the
implications of these changes? Do they maintain the orientation of a recursive public,
or are they attempts to apply Free Software for other private concerns? And if they
are successful, what are the implications for the domains they affect: education,
scholarship, scientific knowledge, and cultural production? What effects do these
changes have on the norms of work and the meaning and shape of knowledge in
these domains? [pg270]

In this chapter I explore in ethnographic detail how the modulations of Free Software 788

undertaken by Connexions and Creative Commons are related to the problems of
reuse, modification, and the norms of scholarly production. I present these two
projects as responses to the contemporary reorientation of knowledge and power;
they are recursive publics just as Free Software is, but they expand the domain of
practice in new directions, that is, into the scholarly world of textbooks and research
and into the legal domains of cultural production more generally.
In the course of ”figuring out” what they are doing, these two projects encounter a 789

surprising phenomenon: the changing meaning of the finality of a scholarly or
creative work. Finality is not certainty. While certainty is a problematic that is well
and often studied in the philosophy of science and in science studies, finality is less
so. What makes a work stay a work? What makes a fact stay a fact? How does
something, certain or not, achieve stability and identity? Such finality, the very
paradigm of which is the published book, implies stability. But Connexions and
Creative Commons, through their experiments with Free Software, confront the
problem of how to stabilize a work in an unstable context: that of shareable source
code, an open Internet, copyleft licenses, and new forms of coordination and
collaboration.326 The meaning of finality will have important effects on the ability to
constitute a politics around any given work, whether a work of art or a work of
scholarship and science. The actors in Creative Commons and Connexions realize this,
and they therefore form yet another instance of a recursive public, precisely because
they seek ways to define the meaning of finality publicly and openlyand to make
modifiability an irreversible aspect of the process of stabilizing knowledge.
The modulations of Free Software performed by Connexions and Creative Commons 790

reveal two significant issues. The first is the troublesome matter of the meaning of
reuse, as in the reuse of concepts, ideas, writings, articles, papers, books, and so on
for the creation of new objects of knowledge. Just as software source code can be

326Actor-network theory comes closest to dealing with such ”ontological” issues as, for example,
airplanes in John Laws Aircraft Stories, the disease atheroscleroris in Annemarie Mols The Body Multiple,
or in vitro fertilization in Charis Thompsons Making Parents. The focus here on finality is closely related,
but aims at revealing the temporal characteristics of highly modifiable kinds of knowledge-objects, like
textbooks or databases, as in Geoffrey Bowkers Memory Practices in the Sciences.

Two Bits Christopher M. Kelty 211

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

shared, ported, and forked to create new versions with new functions, and just as
software and people can be coordinated in new ways using the Internet, so too can
scholarly and scientific content. I explore the implications of this comparison in this
chapter. The central gambit of both Connexions and Creative Commons (and much of
scientific practice generally) is that new work builds on [pg271] previous work. In the
sciences the notion that science is cumulative is not at issue, but exactly how
scientific knowledge accumulates is far from clear. Even if ”standing on the shoulders
of giants” can be revealed to hide machinations, secret dealings, and Machiavellian
maneuvering of the most craven sort, the very concept of cumulative knowledge is
sound. Building a fact, a result, a machine, or a theory out of other, previous
worksthis kind of reuse as progress is not in question. But the actual material practice
of writing, publication, and the reuse of other results and works is something that,
until very recently, has been hidden from view, or has been so naturalized that the
norms of practice are nearly invisible to practitioners themselves.
This raises the other central concern of this chapter: that of the existence or 791

nonexistence of norms. For an anthropologist to query whether or not norms exist
might seem to theorize oneself out of a job; one definition of anthropology is, after all,
the making explicit of cultural norms. But the turn to ”practices” in anthropology and
science studies has in part been a turn away from ”norms” in their classic sociological
and specifically Mertonian fashion. Robert Mertons suggestion that science has been
governed by normsdisinterestedness, communalism, organized skepticism,
objectivityhas been repeatedly and roundly criticized by a generation of scholars in
the sociology of scientific knowledge who note that even if such norms are asserted
by actors, they are often subverted in the doing.327 But a striking thing has happened
recently; those Mertonian norms of science have in fact become the more or less
explicit goals in practice of scientists, engineers, and geeks in the wake of Free
Software. If Mertonian norms do not exist, then they are being invented. This, of
course, raises novel questions: can one create norms? What exactly would this mean?
How are norms different from culture or from legal and technical constraints? Both
Connexions and Creative Commons explicitly pose this question and search for ways
to identify, change, or work with norms as they understand them, in the context of
reuse.

Whiteboards: What Was Publication? 792

More than once, I have found myself in a room with Rich Baraniuk and Brent 793

Hendricks and any number of other employees of the [pg272] Connexions project,
staring at a whiteboard on which a number of issues and notes have been scrawled.
Usually, the notes have a kind of palimpsestic quality, on account of the array of
previous conversations that are already there, rewritten in tiny precise script in a
corner, or just barely erased beneath our discussion. These conversations are often
precipitated by a series of questions that Brent, Ross Reedstrom, and the
development team have encountered as they build and refine the system. They are
never simple questions. A visitor staring at the whiteboard might catch a glimpse of
327Merton, ”The Normative Structure of Science.”

Two Bits Christopher M. Kelty 212

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

the peculiar madness that afflicts the project: a mixture of legal terms, technical
terms, and terms like scholarly culture or DSP communities. Im consulted whenever
this mixture of terms starts to worry the developers in terms of legality, culture, or
the relationship between the two. Im generally put in the position of speaking either
as a lawyer (which, legally speaking, I am not supposed to do) or as an anthropologist
(which I do mainly by virtue of holding a position in an anthropology department).
Rarely are the things I say met with assent: Brent and Ross, like most hackers, are
insanely well versed in the details of intellectual-property law, and they routinely
correct me when I make bold but not-quite-true assertions about it. Nonetheless, they
rarely feel well versed enough to make decisions about legal issues on their own, and
often I have been calledon again as a thoughtful sounding board, and off again as
intermediary with Creative Commons.
This process, I have come to realize, is about figuring something out. It is not just a 794

question of solving technical problems to which I might have some specific domain
knowledge. Figuring out is modulation; it is template-work. When Free Software
functions as a template for projects like Connexions, it does so literally, by allowing us
to trace a known form of practice (Free Software) onto a less well known, seemingly
chaotic background and to see where the forms match up and where they do not. One
very good way to understand what this means in a particular casethat is, to see more
clearly the modulations that Connexions has performedis to consider the practice and
institution of scholarly publication through the template of Free Software.
Consider the ways scholars have understood the meaning and significance of print 795

and publication in the past, prior to the Internet and the contemporary reorientation
of knowledge and power. The list of ambitious historians and theorists of the
relationship [pg273] of media to knowledge is long: Lucien Febvre, Walter Ong, Marshall
McLuhan, Jack Goody, Roger Chartier, Friedrich Kittler, Elizabeth Eisenstein, Adrian
Johns, to name a few.328 With the exception of Johns, however, the history of
publication does not start with the conventional, legal, and formal practices of
publication so much as it does with the material practices and structure of the media
themselves, which is to say the mechanics and technology of the printed book.329
Ongs theories of literacy and orality, Kittlers re-theorization of the structure of media
evolution, Goodys anthropology of the media of accounting and writingall are focused
on the tangible media as the dependent variable of change. By contrast, Johnss The
Nature of the Book uncovers the contours of the massive endeavor involved in
making the book a reliable and robust form for the circulation of knowledge in the
seventeenth century and after.
Prior to Johnss work, arguments about the relationship of print and power fell 796

primarily into two camps: one could overestimate the role of print and the printing
328See Johns, The Nature of the Book; Eisenstein, The Printing Press as an Agent of Change; McLuhan,
The Gutenberg Galaxy and Understanding Media; Febvre and Martin, The Coming of the Book; Ong,
Ramus, Method, and the Decay of Dialogue; Chartier, The Cultural Uses of Print in Early Modern France
and The Order of Books; Kittler, Discourse Networks 1800/1900 and Gramophone, Film, Typewriter.
329There is less communication between the theorists and historians of copyright and authorship and
those of the book; the former are also rich in analyses, such as Jaszi and Woodmansee, The Construction
of Authorship; Mark Rose, Authors and Owners; St. Amour, The Copywrights; Vaidhyanathan, Copyrights
and Copywrongs.

Two Bits Christopher M. Kelty 213

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

press by suggesting that the ”fixity” of a text and the creation of multiple copies led
automatically to the spread of ideas and the rise of enlightenment. Alternately, one
could underestimate the role of the book by suggesting that it was merely a
transparent media form with no more or less effect on the circulation or evaluation of
ideas than manuscripts or television. Johns notes in particular the influence of
Elizabeth Eisensteins scholarship on the printing press (and Bruno Latours
dependence on this in turn), which very strongly identified the characteristics of the
printed work with the cultural changes seen to follow, including the success of the
scientific revolution and the experimental method.330 For example, Eisenstein argued
that fixitythe fact that a set of printed books can be exact copies of each otherimplied
various transformations in knowledge. Johns, however, is at pains to show just how
unreliable texts are often perceived to be. From which sources do they come? Are
they legitimate? Do they have the backing or support of scholars or the crown? In
short, fixity can imply sound knowledge only if there is a system of evaluation already
in place. Johns suggests a reversal of this now common-sense notion: ”We may
consider fixity not as an inherent quality, but as a transitive one. . . . We may adopt
the principle that fixity exists only inasmuch as it is recognized and acted upon by
peopleand not otherwise. The consequence of this change in perspective is that print
culture itself is immediately laid open to analysis. It becomes [pg274] a result of
manifold representations, practices and conflicts, rather than just the manifold cause
with which we are often presented. In contrast to talk of a print logic imposed on
humanity, this approach allows us to recover the construction of different print
cultures in particular historical circumstances.”331

Johnss work focuses on the elaborate and difficult cultural, social, and economic work 797

involved, in the sixteenth and seventeenth centuries, in transforming the European
book into the kind of authority it is taken to be across the globe today. The creation
and standardization not just of books but of a publishing infrastructure involved the
kind of careful social engineering, reputation management, and skills of distinction,
exclusion, and consensus that science studies has effectively explored in science and
engineering. Hence, Johns focuses on ”print-in-the-making” and the relationship of
the print culture of that period to the reliability of knowledge. Instead of making
broad claims for the transformation of knowledge by print (eerily similar in many
respects to the broad claims made for the Internet), Johns explores the clash of
representations and practices necessary to create the sense, in the twentieth century,
that there really is or was only one print culture.
The problem of publication that Connexions confronts is thus not simply caused by 798

the invention or spread of the Internet, much less that of Free Software. Rather, it is a
confrontation with the problems of producing stability and finality under very different
technical, legal, and social conditionsa problem more complex even than the
”different print cultures in particular historical circumstances” that Johns speaks of in
regard to the book. Connexions faces two challenges: that of figuring out the

330Eisenstein, The Printing Press as an Agent of Change. Eisensteins work makes direct reference to
McLuhans thesis in The Gutenberg Galaxy, and Latour relies on these works and others in ”Drawing
Things Together.”
331Johns, The Nature of the Book, 19-20.

Two Bits Christopher M. Kelty 214

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

difference that today introduces with respect to yesterday, and that of creating or
modifying an infrastructure in order to satisfy the demands of a properly authoritative
knowledge. Connexions textbooks of necessity look different from conventional
textbooks; they consist of digital documents, or ”modules,” that are strung together
and made available through the Web, under a Creative Commons license that allows
for free use, reuse, and modification. This version of ”publication” clearly has
implications for the meaning of authorship, ownership, stewardship, editing,
validation, collaboration, and verification.
The conventional appearance of a bookin bookstores, through mail-order, in book 799

clubs, libraries, or universitieswas an event that signified, as the name suggests, its
official public appearance [pg275] in the world. Prior to this event, the text circulated
only privately, which is to say only among the relatively small network of people who
could make copies of it or who were involved in its writing, editing, proofreading,
reviewing, typesetting, and so on. With the Internet, the same text can be made
instantly available at each of these stages to just as many or more potential readers.
It effectively turns the event of publication into a notional eventthe click of a
buttonrather than a highly organized, material event. Although it is clear that the
practice of publication has become denaturalized or destabilized by the appearance
of new information technologies, this hardly implies that the work of stabilizing the
meaning of publicationand producing authoritative knowledge as a resulthas ceased.
The tricky part comes in understanding how Free Software is used as a template by
which the authority of publication in the Gutenberg Galaxy is being transformed into
the authority of publication in the Turing Universe.

Publication in Connexions 800

In the case of Connexions there are roughly three stages to the creation of content. 801

The first, temporally speaking, is whatever happens before Connexions is involved,
that is, the familiar practices of what I would call composition, rather than simply
writing. Some project must be already under way, perhaps started under the
constraints of and in the era of the book, perhaps conceived as a digital textbook or
an online textbook, but still, as of yet, written on paper or saved in a Word document
or in LaTeX, on a scholars desktop. It could be an individual project, as in the case of
Richs initial plan to write a DSP textbook, or it could be a large collaborative project to
write a textbook.
The second stage is the one in which the document or set of documents is translated 802

(”Connexified”) into the mark-up system used by Connexions. Connexions uses the
eXtensible Mark-up Language (XML), in particular a subset of tags that are
appropriate to textbooks. These ”semantic” tags (e.g., <term>) refer only to the
meaning of the text they enclose, not to the ”presentation” or syntactic look of what
they enclose; they give the document the necessary structure it needs to be
transformed in a number of creative ways. Because XML is related only to content,
and not to [pg276] presentation (it is sometimes referred to as ”agnostic”), the same
document in Connexions can be automatically made to look a number of different
ways, as an onscreen presentation in a browser, as a pdf document, or as an

Two Bits Christopher M. Kelty 215

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

on-demand published work that can be printed out as a book, complete with
continuous page numbering, footnotes (instead of links), front and back matter, and
an index. Therein lies much of Connexionss technical wizardry.
During the second stage, that of being marked up in XML, the document is not quite 803

public, although it is on the Internet; it is in what is called a workgroup, where only
those people with access to the particular workgroup (and those have been invited to
collaborate) can see the document. It is only when the document is finished, ready to
be distributed, that it will enter the third, ”published” stagethe stage at which anyone
on the Internet can ask for the XML document and the software will display it, using
style sheets or software converters, as an HTML page, a pdf document for printing, or
as a section of a larger course. However, publication does not here signify finality;
indeed, one of the core advantages of Connexions is that the document is rendered
less stable than the book-object it mimics: it can be updated, changed, corrected,
deleted, copied, and so on, all without any of the rigmarole associated with changing
a published book or article. Indeed, the very powerful notion of fixity theorized by
McLuhan and Eisenstein is rendered moot here. The fact that a document has been
printed (and printed as a book) no longer means that all copies will be the same;
indeed, it may well change from hour to hour, depending on how many people
contribute (as in the case of Free Software, which can go through revisions and
updates as fast, or faster, than one can download and install new versions). With
Wikipedia entries that are extremely politicized or active, for example, a ”final” text is
impossible, although the dynamics of revision and counter-revision do suggest
outlines for the emergence of some kinds of stability. But Connexions differs from
Wikipedia with respect to this finality as well, because of the insertion of the second
stage, during which a self-defined group of people can work on a nonpublic text
before committing changes that a public can see.
It should be clear, given the example of Connexions, or any similar project such as 804

Wikipedia, that the changing meaning of ”publication” in the era of the Internet has
significant implications, both practical (they affect the way people can both write and
publish [pg277] their works) and legal (they fit uneasily into the categories established
for previous media). The tangibility of a textbook is quite obviously transformed by
these changes, but so too is the cultural significance of the practice of writing a
textbook. And if textbooks are written differently, using new forms of collaboration
and allowing novel kinds of transformation, then the validation, certification, and
structure of authority of textbooks also change, inviting new forms of open and
democratic participation in writing, teaching, and learning. No longer are all of the
settled practices of authorship, collaboration, and publication configured around the
same institutional and temporal scheme (e.g., the book and its publishing
infrastructure). In a colloquial sense, this is obvious, for instance, to any musician
today: recording and releasing a song to potentially millions of listeners is now
technically possible for anyone, but how that fact changes the cultural significance of
music creation is not yet clear. For most musicians, creating music hasnt changed
much with the introduction of digital tools, since new recording and composition
technologies largely mimic the recording practices that preceded them (for example,
a program like Garage Band literally looks like a four-track recorder on the screen).

Two Bits Christopher M. Kelty 216

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Similarly, much of the practice of digital publication has been concerned with
recreating something that looks like traditional publication.332

Perhaps unsurprisingly, the Connexions team spent a great deal of time at the outset 805

of the project creating a pdf-document-creation system that would essentially mimic
the creation of a conventional textbook, with the push of a button.333 But even this
process causes a subtle transformation: the concept of ”edition” becomes much
harder to track. While a conventional textbook is a stable entity that goes through a
series of printings and editions, each of which is marked on its publication page, a
Connexions document can go through as many versions as an author wants to make
changes, all the while without necessarily changing editions. In this respect, the
modulation of the concept of source code translates the practices of updating and
”versioning” into the realm of textbook writing. Recall the cases ranging from the
”continuum” of UNIX versions discussed by Ken Thompson to the complex struggles
over version control in the Linux and Apache projects. In the case of writing source
code, exactitude demands that the change of even a single character be tracked and
labeled as a version change, whereas a [pg278] conventional-textbook spelling
correction or errata issuance would hardly create the need for a new edition.
In the Connexions repository all changes to a text are tracked and noted, but the 806

identity of the module does not change. ”Editions” have thus become ”versions,”
whereas a substantially revised or changed module might require not reissuance but
a forking of that module to create one with a new identity. Editions in publishing are
not a feature of the medium per se; they are necessitated by the temporal and spatial
practices of publication as an event, though this process is obviously made visible
only in the book itself. In the same way, versioning is now used to manage a process,
but it results in a very different configuration of the medium and the material
available in that medium. Connexions traces the template of software production
(sharing, porting, and forking and the norms and forms of coordination in Free
Software) directly onto older forms of publication. Where the practices match, no
change occurs, and where they dont, it is the reorientation of knowledge and power
and the emergence of recursive publics that serves as a guide to the development of
the system.
Legally speaking, the change from editions to versions and forks raises troubling 807

questions about the boundaries and status of a copyrighted work. It is a peculiar
feature of copyright law that it needs to be updated regularly each time the media
change, in order to bring certain old practices into line with new possibilities.

332On this subject, cf. Pablo Boczkowskis study of the digitization of newspapers, Digitizing the News.
333Conventional here is actually quite historically proximate: the system creates a pdf document by
translating the XML document into a LaTeX document, then into a pdf document. LaTeX has been, for
some twenty years, a standard text-formatting and typesetting language used by some [pg345] sectors of
the publishing industry (notably mathematics, engineering, and computer science). Were it not for the
existence of this standard from which to bootstrap, the Connexions project would have faced a
considerably more difficult challenge, but much of the infrastructure of publishing has already been
partially transformed into a computer-mediated and -controlled system whose final output is a printed
book. Later in Connexionss lifetime, the group coordinated with an Internet-publishing startup called
Qoop.com to take the final step and make Connexions courses available as print-on-demand,
cloth-bound textbooks, complete with ISBNs and back-cover blurbs.

Two Bits Christopher M. Kelty 217

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Scattered throughout the copyright statutes is evidence of old new media:
gramophones, jukeboxes, cable TV, photocopiers, peer-to-peer file-sharing programs,
and so on. Each new form of communication shifts the assumptions of past media
enough that they require a reevaluation of the putative underlying balance of the
constitutional mandate that gives (U.S.) intellectual-property law its inertia. Each new
device needs to be understood in terms of creation, storage, distribution, production,
consumption, and tangibility, in order to assess the dangers it poses to the rights of
inventors and artists.
Because copyright law ”hard codes” the particular media into the statutes, copyright 808

law is comfortable with, for example, book editions or musical recordings. But in
Connexions, new questions arise: how much change constitutes a new work, and thus
demands a new copyright license? If a licensee receives one copy of a work, to which
versions will he or she retain rights after changes? Because [pg279] of the complexity of
the software involved, there are also questions that the law simply cannot deal with
(just as it had not been able to do in the late 1970s with respect to the definition of
software): is the XML document equivalent to the viewable document, or must the
style sheet also be included? Where does the ”content” begin and the ”software”
end? Until the statutes either incorporate these new technologies or are changed to
govern a more general process, rather than a particular medium, these questions will
continue to emerge as part of the practice of writing.
This denaturalization of the notion of ”publication” is responsible for much of the 809

surprise and concern that greets Connexions and projects like it. Often, when I have
shown the system to scholars, they have displayed boredom mixed with fear and
frustration: ”It can never replace the book.” On the one hand, Connexions has made
an enormous effort to make its output look as much like conventional books as
possible; on the other hand, the anxiety evinced is justified, because what
Connexions seeks to replace is not the book, which is merely ink and paper, but the
entire publishing process. The fact that it is not replacing the book per se, but the
entire process whereby manuscripts are made into stable and tangible objects called
books is too overwhelming for most scholars to contemplateespecially scholars who
have already mastered the existing process of book writing and creation. The fact
that the legal system is built to safeguard something prior to and not fully continuous
with the practice of Connexions only adds to the concern that such a transformation is
immodest and risky, that it endangers a practice with centuries of stability behind it.
Connexions, however, is not the cause of destabilization; rather, it is a response to or
recognition of a problem. It is not a new problem, but one that periodically reemerges:
a reorientation of knowledge and power that includes questions of enlightenment and
rationality, democracy and self-governance, liberal values and problems of the
authority and validation of knowledge. The salient moments of correlation are not the
invention of the printing press and the Internet, but the struggle to make published
books into a source of authoritative knowledge in the seventeenth and eighteenth
centuries and the struggle to find ways to do the same with the Internet
today.334

Connexions is, in many ways, understood by its practitioners to be both a response to 810

334See Johns, The Nature of the Book; Warner, The Letters of the Republic.

Two Bits Christopher M. Kelty 218

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

the changing relations of knowledge and power, [pg280] one that reaffirms the
fundamental values of academic freedom and the circulation of knowledge, and also
an experiment with, even a radicalization of, the ideals of both Free Software and
Mertonian science. The transformation of the meaning of publication implies a
fundamental shift in the status, in the finality of knowledge. It seeks to make of
knowledge (knowledge in print, not in minds) something living and constantly
changing, as opposed to something static and final. The fact that publication no
longer signifies finalitythat is, no longer signifies a state of fixity that is assumed in
theory (and frequently in practice) to account for a texts reliabilityhas implications for
how the text is used, reused, interpreted, valued, and trusted.335 Whereas the
traditional form of the book is the same across all printed versions or else follows an
explicit practice of appearing in editions (complete with new prefaces and forewords),
a Connexions document might very well look different from week to week or year to
year.336 While a textbook might also change significantly to reflect the changing state
of knowledge in a given field, it is an explicit goal of Connexions to allow this to
happen ”in real time,” which is to say, to allow educators to update textbooks as fast
as they do scientific knowledge.337

These implications are not lost on the Connexions team, but neither are they 811

understood as goals or as having simple solutions. There is a certain immodest,
perhaps even reckless, enthusiasm surrounding these implications, an enthusiasm
that can take both polymath and transhumanist forms. For instance, the
destabilization of the contemporary textbook-publishing system that Connexions

335On fixity, see Eisensteins The Printing Press as an Agent of Change which cites McLuhans The
Gutenberg Galaxy. The stability of texts is also questioned routinely by textual scholars, especially those
who work with manuscripts and complicated varoria (for an excellent introduction, see Bornstein and
Williams, Palimpsest). Michel Foucaults ”What Is an Author?” addresses a related but orthogonal
problematic and is unconcerned with the relatively sober facts of a changing medium.
336A salient and recent point of comparison can be found in the form of Lawrence Lessigs ”second
edition” of his book Code, which is titled Code: Version 2.0 (version is used in the title, but edition is
used in the text). The first book was published in 1999 (”ancient history in Internet time”), and Lessig
convinced the publisher to make it available as a wiki, a collaborative Web site which can be directly
edited by anyone with access. The wiki was edited and updated by hordes of geeks, then ”closed” and
reedited into a second edition with a new preface. It is a particularly tightly controlled example of
collaboration; although the wiki and the book were freely available, the modification and transformation
of them did not amount to a simple free-for-all. Instead, Lessig leveraged his own authority, his authorial
voice, and the power of Basic Books to create something that looks very much like a traditional second
edition, although it was created by processes unimaginable ten years ago.
337The most familiar comparison is Wikipedia, which was started after Connexions, but grew far more
quickly and dynamically, largely due to the ease of use of the system (a bone of some contention among
the Connexions team). Wikipedia has come under assault primarily for being unreliable. The suspicion
and fear that surround Wikipedia are similar to those that face Connexions, but in the case of Wikipedia
entries, the commitment to openness is stubbornly meritocratic: any article can be edited by anyone at
anytime, and it matters not how firmly one is identified as an expert by rank, title, degree, or experiencea
twelve year olds knowledge of the Peloponnesian War is given the same access and status as an
eighty-year-old classicists. Articles are not owned by individuals, and [pg346] all work is pseudonymous and
difficult to track. The range of quality is therefore great, and the mainstream press has focused largely
on whether Wikipedia is more or less reliable than conventional encyclopedias, not on the process of
knowledge production. See, for instance, George Johnson, ”The Nitpicking of the Masses vs. the
Authority of the Experts,” New York Times, 3 January 2006, Late EditionFinal, F2; Robert McHenry, ”The
Faith-based Encyclopedia,” TCS Daily, 15 November 2004, ⌜ http://www.techcentralstation.com/111504A.html ⌟ .

Two Bits Christopher M. Kelty 219

http://www.techcentralstation.com/111504A.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

represents is (according to Rich) a more accurate way to represent the connections
between concepts than a linear textbook format. Connexions thus represents a use of
technology as an intervention into an existing context of practice. The fact that
Connexions could also render the reliability or trustworthiness of scholarly knowledge
unstable is sometimes discussed as an inevitable outcome of technical
changesomething that the world at large, not Connexions, must learn to deal
with.
To put it differently, the ”goal” of Connexions was never to destroy publishing, but it 812

has been structured by the same kind of imaginations of moral and technical order
that pervade Free Software and the construction of the Internet. In this sense Rich,
Brent, and others are geeks in the same sense as Free Software geeks: they [pg281]

share a recursive public devoted to achieving a moral and technical order in which
openness and modifiability are core values (”If we are successful, we will disappear”).
The implication is that the existing model and infrastructure for the publication of
textbooks is of a different moral and technical order, and thus that Connexions needs
to innovate not only the technology (the source code or the openness of the system)
or the legal arrangements (licenses) but also the very norms and forms of textbook
writing itself (coordination and, eventually, a movement). If publication once implied
the appearance of reliable, final textseven if the knowledge therein could be routinely
contested by writing more texts and reviews and critiquesConnexions implies the
denaturalization of not knowledge per se, but of the process whereby that knowledge
is stabilized and rendered reliable, trustworthy.
A keyword for the transformation of textbook writing is community, as in the tagline 813

of the Connexions project: ”Sharing Knowledge and Building Communities.” Building
implies that such communities do not yet exist and that the technology will enable
them; however, Connexions began with the assumption that there exist standard
academic practices and norms of creating teaching materials. As a result, Connexions
both enables these practices and norms, by facilitating a digital version of the
textbook, and intervenes in them, by creating a different process for creating a
textbook. Communities are both assumed and desired. Sometimes they are real (a
group of DSP engineers, networked around Rich and others who work in his
subspecialty), and sometimes they are imagined (as when in the process of grant
writing we claim that the most important component of the success of the project is
the ”seeding” of scholarly communities). Communities, furthermore, are not
audiences or consumers, and sometimes not even students or learners. They are
imagined to be active, creative producers and users of teaching materials, whether
for teaching or for the further creation of such materials. The structure of the
community has little to do with issues of governance, solidarity, or pedagogy, and
much more to do with a set of relationships that might obtain with respect to the
creation of teaching materialsa community of collaborative production or
collaborative debugging, as in the modulation of forms of coordination, modulated to
include the activity of creating teaching materials. [pg282]

Two Bits Christopher M. Kelty 220

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Agency and Structure in Connexions 814

One of the most animated whiteboard conversations I remember having with Brent 815

and Ross concerned difference between the possible ”roles” that a Connexions user
might occupy and the implications this could have for both the technical features of
the system and the social norms that Connexions attempts to maintain and replicate.
Most software systems are content to designate only ”users,” a generic
name-and-password account that can be given a set of permissions (and which has
behind it a long and robust tradition in computer-operating-system and security
research). Users are users, even if they may have access to different programs and
files. What Connexions needed was a way to designate that the same person might
have two different exogenous roles: a user might be the author, but not the owner of
the content, and vice versa. For instance, perhaps Rice University maintains the
copyright for a work, but the author is credited for its creation. Such a situationknown,
in legal terms, as ”work for hire”is routine in some universities and most corporations.
So while the author is generally given the freedom and authority to create and modify
the text as he or she sees fit, the university asserts copyright ownership in order to
retain the right to commercially exploit the work. Such a situation is far from settled
and is, of course, politically fraught, but the Connexions system, in order to be useful
at all to anyone, needed to accommodate this fact. Taking an oppositional political
stand would render the system useless in too many cases or cause it to become
precisely the kind of authorless, creditless system as Wikipediaa route not desired by
many academics. In a perfectly open world all Connexions modules might each have
identical authors and owners, but pragmatism demands that the two roles be kept
separate.
Furthermore, there are many people involved every day in the creation of academic 816

work who are neither the author nor the owner: graduate students and
undergraduates, research scientists, technicians, and others in the grand, contested,
complex academic ecology. In some disciplines, all contributors may get authorship
credit and some of them may even share ownership, but often many of those who do
the work get mentioned only in acknowledgments, or not at all. Again, although the
impulse of the creators of Connexions might be to level the playing field and allow
only one kind of user, the fact of the matter is that academics simply would not use
[pg283] such a system.338 The need for a role such as ”maintainer” (which might also
include ”editor”), which was different from author or owner, thus also presented
itself.

338Again, a comparison with Wikipedia is apposite. Wikipedia is, morally speaking, and especially in the
persona of its chief editor, Jimbo Wales, totally devoted to merit-based equality, with users getting no
special designation beyond the amount and perceived quality of the material they contribute. Degrees or
special positions of employment are anathema. It is a quintessentially American, anti-intellectual-fueled,
Horatio Alger-style approach in which the slate is wiped clean and contributors are given a chance to
prove themselves independent of background. Connexions, by contrast, draws specifically from the
ranks of intellectuals or academics and seeks to replace the infrastructure of publishing. Wikipedia is
interested only in creating a better encyclopedia. In this respect, it is transhumanist in character,
attributing its distinctiveness and success to the advances in technology (the Internet, wiki, broadband
connections, Google). Connexions on the other hand is more polymathic, devoted to intervening into the
already complexly constituted organizational practice of scholarship and academia.

Two Bits Christopher M. Kelty 221

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

As Brent, Ross, and I stared at the whiteboard, the discovery of the need for multiple 817

exogenous roles hit all of us in a kind of slow-motion shockwave. It was not simply
that the content needed to have different labels attached to it to keep track of these
people in a databasesomething deeper was at work: the law and the practice of
authorship actually dictated, to a certain extent, what the software itself should look
like. All of sudden, the questions were preformatted, so to speak, by the law and by
certain kinds of practices that had been normalized and thus were nearly invisible:
who should have permission to change what? Who will have permission to add or
drop authors? Who will be allowed to make what changes, and who will have the legal
right to do so and who the moral or customary right? What implications follow from
the choices the designers make and the choices we present to authors or
maintainers?
The Creative Commons licenses were key to revealing many of these questions. The 818

licenses were in themselves modulations of Free Software licenses, but created with
people like artists, musicians, scholars, and filmmakers in mind. Without them, the
content in Connexions would be unlicensed, perhaps intended to be in the public
domain, but ultimately governed by copyright statutes that provided no clear
answers to any of these questions, as those statutes were designed to deal with older
media and a different publication process. Using the Creative Commons licenses, on
the other hand, meant that the situation of the content in Connexions became
well-defined enough, in a legal sense, to be used as a constraint in defining the
structure of the software system. The license itself provided the map of the territory
by setting parameters for things such as distribution, modification, attribution, and
even display, reading, or copying.
For instance, when the author and owner are different, it is not at all obvious who 819

should be given credit. Authors, especially academic authors, expect to be given
credit (which is often all they get) for an article or a textbook they have written, yet
universities often retain ownership of those textbooks, and ownership would seem to
imply a legal right to be identified as both owner and author (e.g., Forrester Research
reports or UNESCO reports, which hide the [pg284] identity of authors). In the absence
of any licenses, such a scenario has no obvious solution or depends entirely on the
specific context. However, the Creative Commons licenses specified the meaning of
attribution and the requirement to maintain the copyright notice, thus outlining a
procedure that gave the Connexions designers fixed constraints against which to
measure how they would implement their system.
A positive result of such constraints is that they allow for a kind of institutional 820

flexibility that would not otherwise be possible. Whether a university insists on
expropriating copyright or allows scholars to keep their copyrights, both can use
Connexions. Connexions is more ”open” than traditional textbook publishing because
it allows a greater number of heterogeneous contributors to participate, but it is also
more ”open” than something like Wikipedia, which is ideologically committed to a
single definition of authorship and ownership (anonymous, reciprocally licensed
collaborative creation by authors who are also the owners of their work). While
Wikipedia makes such an ideological commitment, it cannot be used by institutions
that have made the decision to operate as expropriators of content, or even in cases

Two Bits Christopher M. Kelty 222

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

wherein authors willingly allow someone else to take credit. If authors and owners
must be identical, then either the author is identified as the owner, which is illegal in
some cases, or the owner is identified as the author, a situation no academic is willing
to submit to.
The need for multiple roles also revealed other peculiar and troubling problems, such 821

as the issue of giving an ”identity” to long-dead authors whose works are out of
copyright. So, for instance, a piece by A. E. Housman was included as a module for a
class, and while it is clear that Housman is the author, the work is no longer under
copyright, so Housman is no longer the copyright holder (nor is the society which
published it in 1921). Yet Connexions requires that a copyright be attached to each
module to allow it to be licensed openly. This particular case, of a dead author,
necessitated two interesting interventions. Someone has to actually create an
account for Housman and also issue the work as an ”edition” or derivative under a
new copyright. In this case, the two other authors are Scott McGill and Christopher
Kelty. A curious question arose in this context: should we be listed both as authors
and owners (and maintainers), or only as owners and maintainers? And if someone
uses the module in a new context (as they have the right to do, [pg285] under the
license), will they be required to give attribution only to Housman, or also to McGill
and Kelty as well? What rights to ownership do McGill and Kelty have over the digital
version of the public-domain text by Housman?339

The discussion of roles circulated fluidly across concepts like law (and legal licenses), 822

norms, community, and identity. Brent and Ross and others involved had developed
sophisticated imaginations of how Connexions would fit into the existing ecology of
academia, constrained all the while by both standard goals, like usability and
efficiency, and by novel legal licenses and concerns about the changing practices of
authors and scholars. The question, for instance, of how a module can be used
(technically, legally) is often confused with, or difficult to disentangle from, how a
module should be used (technically, legally, or, more generally, ”socially”with usage
shaped by the community who uses it). In order to make sense of this, Connexions
programmers and participants like myself are prone to using the language of custom
and norm, and the figure of community, as in ”the customary norms of a scholarly
community.”

From Law and Technology to Norm 823

The meaning of publication in Connexions and the questions about roles and their 824

proper legal status emerged from the core concern with reuse, which is the primary
modulation of Free Software that Connexions carries out: the modulation of the
meaning of source code to include textbook writing. What makes source code such a
339An even more technical feature concerned the issue of the order of authorship. The designers at first
decided to allow Connexions to simply display the authors in alphabetical order, a practice adopted by
some disciplines, like computer science. However, in the case of the Housman example this resulted in
what looked like a module authored principally by me, and only secondarily by A. E. Housman. And
without the ability to explicitly designate order of authorship, many disciplines had no way to express
their conventions along these lines. As a result, the system was redesigned to allow users to designate
the order of authorship as well.

Two Bits Christopher M. Kelty 223

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

central component of Free Software is the manner in which it is shared and
transformed, not the technical features of any particular language or program. So the
modulation of source code to include textbooks is not just an attempt to make
textbooks exact, algorithmic, or digital, but an experiment in sharing textbook writing
in a similar fashion.
This modulation also affects the other components: it creates a demand for openness 825

in textbook creation and circulation; it demands new kinds of copyright licenses (the
Creative Commons licenses); and it affects the meaning of coordination among
scholars, ranging from explicit forms of collaboration and co-creation to the entire
spectrum of uses and reuses that scholars normally make of their [pg286] peers works.
It is this modulation of coordination that leads to the second core concern of
Connexions: that of the existence of ”norms” of scholarly creation, use, reuse,
publication, and circulation.
Since software programmers and engineers are prone to thinking about things in 826

concrete, practical, and detailed ways, discussions of creation, use, and circulation
are rarely conducted at the level of philosophical abstraction. They are carried out on
whiteboards, using diagrams.
The whiteboard diagram transcribed in figure 8 was precipitated by a fairly precise 827

question: ”When is the reuse of something in a module (or of an entire module)
governed by academic norms and when is it subject to the legal constraints of the
licenses?” For someone to quote a piece of text from one module in another is
considered normal practice and thus shouldnt involve concerns about legal rights and
duties to fork the module (create a new modified version, perhaps containing only the
section cited, which is something legal licenses explicitly allow). But what if someone
borrows, say, all of the equations in a module about information theory and uses
them to illustrate a very different point in a different module. Does he or she have
either a normal or a legal right to do so? Should the equations be cited? What should
that citation look like? What if the equations are particularly hard to mark-up in the
MathML language and therefore represent a significant investment in time on the part
of the original author? Should the law govern this activity, or should norms?
2bits_09_08-100.png,w640h534 [* Whiteboard diagram: the cascade of reuse in 828

Connexions. Conception by Ross Reedstrom, Brent Hendricks, and Christopher Kelty.
Transcribed in the authors fieldnotes, 2003.]
There is a natural tendency among geeks to answer these questions solely with 829

respect to the law; it is, after all, highly codified and seemingly authoritative on such
issues. However, there is often no need to engage the law, because of the presumed
consensus (”academic norms”) about how to proceed, even if those norms conflict
with the law. But these norms are nowhere codified, and this makes geeks (and,
increasingly, academics themselves) uneasy. As in the case of a requirement of
attribution, the constraints of a written license are perceived to be much more stable
and reliable than those of culture, precisely because culture is what remains
contested and contestable. So the idea of creating a new ”version” of a text is easier
to understand when it is clearly circumscribed as a legally defined ”derivative work.”
The Connexions software was therefore implemented in such a way that the legal
right to create a derived work (to fork a module) could be done with the press of [pg287]

Two Bits Christopher M. Kelty 224

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

a button: a distinct module is automatically created, and it retains the name of the
original author and the original owner, but now also includes the new authors name
as author and maintainer. That new author can proceed to make any number of
changes.
But is forking always necessary? What if the derivative work contains only a few 830

spelling corrections and slightly updated information? Why not change the existing
module (where such changes would be more akin to issuing a new edition), rather
than create a legally defined derivative work? Why not simply suggest the changes to
the original author? Why not collaborate? While a legal license gives people the right
to do all of these things without ever consulting the person who licensed it, there may
well be occasions [pg288] when it makes much more sense to ignore those rights in
favor of other norms. The answers to these questions depend a great deal on the kind
and the intent of the reuse. A refined version of the whiteboard diagram, depicted in
figure 9, attempts to capture the various kinds of reuse and their intersection with
laws, norms, and technologies.
2bits_09_09-100.png,w640h388 [* Whiteboard diagram transformed: forms of reuse 831

in Connexions. Conception by Christopher Kelty, 2004.]
The center of the diagram contains a list of different kinds of imaginable reuses, 832

arrayed from least interventionist at the top to most interventionist at the bottom,
and it implies that as the intended transformations become more drastic, the
likelihood of collaboration with the original author decreases. The arrow on the left
indicates the legal path from cultural norms to protected fair uses; the arrow on the
right indicates the technical path from built-in legal constraints based on the licenses
to software tools that make collaboration (according to presumed scholarly norms)
easier than the alternative (exercising the legal right to make a derivative work). With
the benefit of hindsight, it seems that the arrows on either side should actually be a
circle that connect laws, technologies, and norms in a chain of influence and
constraint, since it is clear in retrospect that the norms of authorial practice have
actually changed (or at least have been made explicit) based on the existence of
licenses and the types of tools available (such as blogs and Wikipedia).
The diagram can best be understood as a way of representing, to Connexions itself 833

(and its funders), the experiment under way with the components of Free Software.
By modulating source code to include the writing of scholarly textbooks, Connexions
made visible the need for new copyright licenses appropriate to this content; by
making the system Internet-based and relying on open standards such as XML and
Open Source components, Connexions also modulated the concept of openness to
include textbook publication; and by making the system possible as an open
repository of freely licensed textbook modules, Connexions made visible the changed
conditions of coordination, not just between two collaborating authors, but within the
entire system of publication, citation, use, reuse, borrowing, building on, plagiarizing,
copying, emulating, and so on. Such changes to coordination may or may not take
hold. For many scholars, they pose an immodest challenge to a working system that
has developed over centuries, but for others they represent the removal of arbitrary
constraints that prevent [pg289] novel and innovative forms of knowledge creation and
association rendered possible in the last thirty to forty years (and especially in the

Two Bits Christopher M. Kelty 225

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

last ten). For some, these modulations might form the basis for a final modulationa
Free Textbooks movementbut as yet no such movement exists.
In the case of shared software source code, one of the principal reasons for sharing it 834

was to reuse it: to build on it, to link to it, to employ it in ways that made building
more complex objects into an easier task. The very design philosophy of UNIX well
articulates the necessity of modularity and reuse, and the idea is no less powerful in
other areas, such as textbooks. But just as the reuse of software is not simply a
feature of softwares technical characteristics, the idea of ”reusing” scholarly materials
implies all kinds of questions that are not simply questions of recombining texts. The
ability to share source codeand the ability to create complex software based on
itrequires modulations of both the legal meaning of software, as in the case of EMACS,
and the organizational form, as in the [pg290] emergence of Free Software projects
other than the Free Software Foundation (the Linux kernel, Perl, Apache, etc.).
In the case of textbook reuse (but only after Free Software), the technical and the 835

legal problems that Connexions addresses are relatively well specified: what software
to use, whether to use XML, the need for an excellent user interface, and so on.
However, the organizational, cultural, or practical meaning of reuse is not yet entirely
clear (a point made by figures 8 and 9). In many ways, the recognition that there are
cultural norms among academics mirrors the (re)discovery of norms and ethics
among Free Software hackers.340 But the label ”cultural norms” is a mere catch-all for
a problem that is probably better understood as a mixture of concrete technical,
organizational, and legal questions and as more or less abstract social imaginaries
through which a particular kind of material order is understood and pursuedthe
creation of a recursive public. How do programmers, lawyers, engineers, and Free
Software advocates (and anthropologists) ”figure out” how norms work? How do they
figure out ways to operationalize or make use of them? How do they figure out how to
change them? How do they figure out how to create new norms? They do so through
the modulations of existing practices, guided by imaginaries of moral and technical
order. Connexions does not tend toward becoming Free Software, but it does tend
toward becoming a recursive public with respect to textbooks, education, and the
publication of pedagogical techniques and knowledge. The problematic of creating an
independent, autonomous public is thus the subterranean ground of both Free
Software and Connexions.
To some extent, then, the matter of reuse raises a host of questions about the borders 836

and boundaries in and of academia. Brent, Ross, and I assumed at the outset that
communities have both borders and norms, and that the two are related. But, as it
turns out, this is not a safe assumption. At neither the technical nor the legal level is
the use of the software restricted to academicsindeed, there is no feasible way to do
that and still offer it on the Internetnor does anyone involved wish it to be so
restricted. However, there is an implicit sense that the people who will contribute
content will primarily be academics and educators (just as Free Software participants

340I refer here to Eric Raymonds ”discovery” that hackers possess unstated norms that govern what they
do, in addition to the legal licenses and technical practices they engage in (see Raymond,
”Homesteading the Noosphere”). For a critique and background on hacker ethics and norms, see
Coleman, ”The Social Construction of Freedom.”

Two Bits Christopher M. Kelty 226

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

are expected, but not required to be programmers). As figure 9 makes clear, there
may well be tremendous variation in the kinds of reuse that people wish to make,
even within academia. [pg291] Scholars in the humanities, for instance, are loath to
even imagine others creating derivative works with articles they have written and can
envision their work being used only in the conventional manner of being read, cited,
and critiqued. Scholars in engineering, biology, or computer science, on the other
hand, may well take pleasure in the idea or act of reuse, if it is adequately understood
to be a ”scientific result” or a suitably stable concept on which to build.341 Reuse can
have a range of different meanings depending not only on whether it is used by
scholars or academics, but within that heterogeneous group itself.
The Connexions software does not, however, enforce disciplinary differences. If 837

anything it makes very strong and troubling claims that knowledge is knowledge and
that disciplinary constraints are arbitrary. Thus, for instance, if a biologist wishes to
transform a literary scholars article on Darwins tropes to make it reflect current
evolutionary theory, he or she could do so; it is entirely possible, both legally and
technically. The literary scholar could react in a number of ways, including outrage
that the biologist has misread or misunderstood the work or pleasure in seeing the
work refined. Connexions adheres rigorously to its ideas of openness in this regard; it
neither encourages nor censures such behavior.
By contrast, as figure 9 suggests, the relationship between these two scholars can be 838

governed either by the legal specification of rights contained in the licenses (a
privately ordered legal regime dependent on a national-cum-global statutory regime)
or by the customary means of collaboration enabled, perhaps enhanced, by software
tools. The former is the domain of the state, the legal profession, and a moral and
technical order that, for lack of a better word, might be called modernity. The latter,
however, is the domain of the cultural, the informal, the practical, the interpersonal; it
is the domain of ethics (prior to its modernization, perhaps) and of tradition.
If figure 9 is a recapitulation of modernity and tradition (what better role for an 839

anthropologist to play!), then the presumptive boundaries around ”communities”
define which groups possess which norms. But the very design of Connexionsits
technical and legal exactitudeimmediately brings a potentially huge variety of
traditions into conflict with one another. Can the biologist and the literary scholar be
expected to occupy the same universe of norms? Does the fact of being academics,
employees of a university, [pg292] or readers of Darwin ensure this sharing of norms?
How are the boundaries policed and the norms communicated and reinforced?
The problem of reuse therefore raises a much broader and more complex question: 840

do norms actually exist? In particular, do they exist independent of the particular
technical, legal, or organizational practice in which groups of people existoutside the
coordinated infrastructure of scholarship and science? And if Connexions raises this
question, can the same question not also be asked of the elaborate system of
professions, disciplines, and organizations that coordinate the scholarship of different
communities? Are these norms, or are they ”technical” and ”legal” practices? What
difference does formalization make? What difference does bureaucratization
341Bruno Latours Science in Action makes a strong case for the centrality of ”black boxes” in science and
engineering for precisely this reason.

Two Bits Christopher M. Kelty 227

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

make?342

The question can also be posed this way: should norms be understood as historically 841

changing constructs or as natural features of human behavior (regular patterns, or
conventions, which emerge inevitably wherever human beings interact). Are they a
feature of changing institutions, laws, and technologies, or do they form and persist in
the same way wherever people congregate? Are norms features of a ”calculative
agency,” as Michael Callon puts it, or are they features of the evolved human mind,
as Marc Hauser argues?343

The answer that my informants give, in practice, concerning the mode of existence of 842

cultural norms is neither. On the one hand, in the Connexions project the question of
the mode of existence of academic norms is unanswered; the basic assumption is
that certain actions are captured and constrained neither by legal constraints nor
technical barriers, and that it takes people who know or study ”communities” (i.e.,
nonlegal and nontechnical constraints) to figure out what those actions may be. On
some days, the project is modestly understood to enable academics to do what they
do faster and better, but without fundamentally changing anything about the
practice, institutions, or legal relations; on other days, however, it is a radically
transformative project, changing how people think about creating scholarly work, a
project that requires educating people and potentially ”changing the culture” of
scholarly work, including its technology, its legal relations, and its practices.
In stark contrast (despite the very large degree of simpatico), the principal members 843

of Creative Commons answer the question of the existence of norms quite differently
than do those in Connexions: [pg293] they assert that norms not only change but are
manipulated and/or channeled by the modulation of technical and legal practices
(this is the novel version of law and economics that Creative Commons is founded on).
Such an assertion leaves very little for norms or for culture; there may be a deep
evolutionary role for rule following or for choosing socially sanctioned behavior over
socially unacceptable behavior, but the real action happens in the legal and technical
domains. In Creative Commons the question of the existence of norms is answered
firmly in the phrase coined by Glenn Brown: ”punt to culture.” For Creative Commons,
norms are a prelegal and pretechnical substrate upon which the licenses they create
operate. Norms must exist for the strategy employed in the licenses to make senseas
the following story illustrates.

On the Nonexistence of Norms in the Culture of No Culture 844

More than once, I have found myself on the telephone with Glenn Brown, staring at 845

notes, a diagram, or some inscrutable collection of legalese. Usually, the
conversations wander from fine legal points to music and Texas politics to Glenns
travels around the globe. They are often precipitated by some previous conversation

342I should note, in my defense, that my efforts to get my informants to read Max Weber, Ferdinand
Tönnies, Henry Maine, or Emile Durkheim [pg347] proved far less successful than my creation of nice Adobe
Illustrator diagrams that made explicit the reemergence of issues addressed a century ago. It was not
for lack of trying, however.
343Callon, The Laws of the Markets; Hauser, Moral Minds.

Two Bits Christopher M. Kelty 228

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

and by Glenns need to remind himself (and me) what we are in the middle of creating.
Or destroying. His are never simple questions. While the Connexions project started
with a repository of scholarly content in need of a license, Creative Commons started
with licenses in need of particular kinds of content. But both projects required
participants to delve into the details of both licenses and the structure of digital
content, which qualified me, for both projects, as the intermediary who could help
explore these intersections. My phone conversations with Glenn, then, were much
like the whiteboard conversations at Connexions: filled with a mix of technical and
legal terminology, and conducted largely in order to give Glenn the sense that he had
cross-checked his plans with someone presumed to know better. I cant count the
number of times I have hung up the phone or left the conference room wondering,
”Have I just sanctioned something mad?” Yet rarely have I felt that my interventions
served to do more than confirm suspicions or derail already unstable arguments.
[pg294]

In one particular conversationthe ”punt to culture” conversationI found myself 846

bewildered by a sudden understanding of the process of writing legal licenses and of
the particular assumptions about human behavior that need to be present in order to
imagine creating these licenses or ensuring that they will be beneficial to the people
who will use them.
These discussions (which often included other lawyers) happened in a kind of 847

hypothetical space of legal imagination, a space highly structured by legal concepts,
statutes, and precedents, and one extraordinarily carefully attuned to the fine details
of semantics. A core aspect of operating within this imagination is the distinction
between law as an abstract semantic entity and law as a practical fact that people
may or may not deal with. To be sure, not all lawyers operate this way, but the
warrant for thinking this way comes from no less eminent an authority than Oliver
Wendell Holmes, for whom the ”Path of Law” was always from practice to abstract
rule, and not the reverse.344 The opposition is unstable, but I highlight it here
because it was frequently used as a strategy for constructing precise legal language.
The ability to imagine the difference between an abstract rule designating legality
and a rule encountered in practice was a first step toward seeing how the language of
the rule should be constructed.
I helped write, read, and think about the first of the Creative Commons licenses, and 848

it was through this experience that I came to understand how the crafting of legal
language works, and in particular how the mode of existence of cultural or social
norms relates to the crafting of legal language. Creative Commons licenses are not a
familiar legal entity, however. They are modulations of the Free Software license, but
they differ in important ways.
The Creative Commons licenses allow authors to grant the use of their work in about 849

a dozen different waysthat is, the license itself comes in versions. One can, for
instance, require attribution, prohibit commercial exploitation, allow derivative or
modified works to be made and circulated, or some combination of all these. These
different combinations actually create different licenses, each of which grants

344Oliver Wendell Holmes, ”The Path of Law.”

Two Bits Christopher M. Kelty 229

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

intellectual-property rights under slightly different conditions. For example, say
Marshall Sahlins decides to write a paper about how the Internet is cultural; he
copyrights the paper (”ľ 2004 Marshall Sahlins”), he requires that any use of it or any
copies of it maintain the copyright notice and the attribution of [pg295] authorship
(these can be different), and he furthermore allows for commercial use of the paper. It
would then be legal for a publishing house to take the paper off Sahlinss Linux-based
Web server and publish it in a collection without having to ask permission, as long as
the paper remains unchanged and he is clearly and unambiguously listed as author of
the paper. The publishing house would not get any rights to the work, and Sahlins
would not get any royalties. If he had specified noncommercial use, the publisher
would instead have needed to contact him and arrange for a separate license
(Creative Commons licenses are nonexclusive), under which he could demand some
share of revenue and his name on the cover of the book.345 But say he was, instead,
a young scholar seeking only peer recognition and approbationthen royalties would
be secondary to maximum circulation. Creative Commons allows authors to assert, as
its members put it, ”some rights reserved” or even ”no rights reserved.”
But what if Sahlins had chosen a license that allowed modification of his work. This 850

would mean that I, Christopher Kelty, whether in agreement with or in objection to his
work, could download the paper, rewrite large sections of it, add in my own baroque
and idiosyncratic scholarship, and write a section that purports to debunk (or, what
could amount to the same, augment) Sahlinss arguments. I would then be legally
entitled to re-release the paper as ”ľ 2004 Marshall Sahlins, with modifications ľ 2007
Christopher Kelty,” so long as Sahlins is identified as the author of the paper. The
nature or extent of the modifications is not legally restricted, but both the original and
the modified version would be legally attributed to Sahlins (even though he would
own only the first paper).
In the course of a number of e-mails, chat sessions, and phone conversations with 851

Glenn, I raised this example and proposed that the licenses needed a way to account
for it, since it seemed to me entirely possible that were I to produce a modified work
that so distorted Sahlinss original argument that he did not want to be associated with
the modified paper, then he should have the right also to repudiate his identification
as author. Sahlins should, legally speaking, be able to ask me to remove his name
from all subsequent versions of my misrepresentation, thus clearing his good name
and providing me the freedom to continue sullying mine into obscurity. After hashing
it out with the expensive Palo Alto legal firm that was officially drafting the licenses,
we came up with text that said: [pg296] ”If You create a Derivative Work, upon notice
from any Licensor You must, to the extent practicable, remove from the Derivative
Work any reference to such Licensor or the Original Author, as requested.”
The bulk of our discussion centered around the need for the phrase, ”to the extent 852

practicable.” Glenn asked me, ”How is the original author supposed to monitor all the
possible uses of her name? How will she enforce this clause? Isnt it going to be
difficult to remove the name from every copy?” Glenn was imagining a situation of
strict adherence, one in which the presence of the name on the paper was the same
345In December 2006 Creative Commons announced a set of licenses that facilitate the ”follow up”
licensing of a work, especially one initially issued under a noncommercial license.

Two Bits Christopher M. Kelty 230

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

as the reputation of the individual, regardless of who actually read it. On this theory,
until all traces of the authors name were expunged from each of these teratomata
circulating in the world, there could be no peace, and no rest for the wronged.
I paused, then gave the kind of sigh meant to imply that I had come to my hard-won 853

understandings of culture through arduous dissertation research: ”It probably wont
need to be strictly enforced in all casesonly in the significant ones. Scholars tend to
respond to each other only in very circumscribed cases, by writing letters to the
editor or by sending responses or rebuttals to the journal that published the work. It
takes a lot of work to really police a reputation, and it differs from discipline to
discipline. Sometimes, drastic action might be needed, usually not. There is so much
misuse and abuse of peoples arguments and work going on all the time that people
only react when they are directly confronted with serious abuses. And even so, it is
only in cases of negative criticism or misuse that people need respond. When a
scholar uses someones work approvingly, but incorrectly, it is usually considered
petulant (at best) to correct them publicly.”
”In short,” I said, leaning back in my chair and acting the part of expert, ”its like, you 854

know, cmonit isnt all law, there are a bunch of, you know, informal rules of civility and
stuff that govern that sort of thing.”
Then Glenn said., ”Oh, okay, well thats when we punt to culture.” 855

When I heard this phrase, I leaned too far back and fell over, joyfully stunned. Glenn 856

had managed to capture what no amount of fieldwork, with however many subjects,
could have. Some combination of American football, a twist of Hobbes or Holmes, and
a lived understanding of what exactly these copyright licenses are [pg297] meant to
achieve gave this phrase a luminosity I usually associate only with Balinese
cock-fights. It encapsulated, almost as a slogan, a very precise explanation of what
Creative Commons had undertaken. It was not a theory Glenn proposed with this
phrase, but a strategy in which a particular, if vague, theory of culture played a
role.
For those unfamiliar, a bit of background on U.S. football may help. When two teams 857

square off on the football field, the offensive team gets four attempts, called ”downs,”
to move the ball either ten yards forward or into the end zone for a score. The first
three downs usually involve one of two strategies: run or pass, run or pass. On the
fourth down, however, the offensive team must either ”go for it” (run or pass), kick a
field goal (if close enough to the end zone), or ”punt” the ball to the other team.
Punting is a somewhat disappointing option, because it means giving up possession
of the ball to the other team, but it has the advantage of putting the other team as far
back on the playing field as possible, thus decreasing its likelihood of scoring.
To ”punt to culture,” then, suggests that copyright licenses try three times to legally 858

restrict what a user or consumer of a work can make of it. By using the existing
federal intellectual-property laws and the rules of license and contract writing,
copyright licenses articulate to people what they can and cannot do with that work
according to law. While the licenses do not (they cannot) force people, in any tangible
sense, to do one thing or another, they can use the language of law and contract to
warn people, and perhaps obliquely, to threaten them. If the licenses end up silent on
a pointif there is no ”score,” to continue the analogythen its time to punt to culture.

Two Bits Christopher M. Kelty 231

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Rather than make more law, or call in the police, the license strategy relies on culture
to fill in the gaps with peoples own understandings of what is right and wrong,
beyond the law. It operationalizes a theory of culture, a theory that emphasizes the
sovereignty of nonstate customs and the diversity of systems of cultural norms.
Creative Commons would prefer that its licenses remain legally minimalist. It would
much prefer to assumeindeed, the licenses implicitly requirethe robust, powerful
existence of this multifarious, hetero-physiognomic, and formidable opponent to the
law with neither uniform nor mascot, hunched at the far end of the field, preparing to,
so to speak, clean laws clock. [pg298]

Creative Commonss ”culture” thus seems to be a somewhat vague mixture of many 859

familiar theories. Culture is an unspecified but finely articulated set of given, evolved,
designed, informal, practiced, habitual, local, social, civil, or historical norms that are
expected to govern the behavior of individuals in the absence of a state, a court, a
king, or a police force, at one of any number of scales. It is not monolithic (indeed, my
self-assured explanation concerned only the norms of ”academia”), but assumes a
diversity beyond enumeration. It employs elements of relativismany culture should
be able to trump the legal rules. It is not a hereditary biological theory, but one that
assumes historical contingency and arbitrary structures.
Certainly, whatever culture is, it is separate from law. Law is, to borrow Sharon 860

Traweeks famous phrase, ”a culture of no culture” in this sense. It is not the cultural
and normative practices of legal scholars, judges, lawyers, legislators, and lobbyists
that determine what laws will look like, but their careful, expert, noncultural
ratiocination. In this sense, punting to culture implies that laws are the result of
human design, whereas culture is the result of human action, but not of human
design. Law is systematic and tractable; culture may have a deep structure, but it is
intractable to human design. It can, however, be channeled and tracked, nudged or
guided, by law.
Thus, Lawrence Lessig, one of the founders of Creative Commons has written 861

extensively about the ”regulation of social meaning,” using cases such as those
involving the use or nonuse of seatbelts or whether or not to allow smoking in public
places. The decision not to wear a seatbelt, for instance, may have much more to do
with the contextual meaning of putting on a seatbelt (dont you trust the cab driver?)
than with either the existence of the seatbelt (or automatic seatbelts, for that matter)
or with laws demanding their use. According to Lessig, the best law can do in the face
of custom is to change the meaning of wearing the seatbelt: to give the refusal a
dishonorable rather than an honorable meaning. Creative Commons licenses are
based on a similar assumption: the law is relatively powerless in the face of
entrenched academic or artistic customs, and so the best the licenses can do is
channel the meaning of sharing and reuse, of copyright control or infringement. As
Glenn explained in the context of a discussion about a license that would allow music
sampling. [pg299]

We anticipate that the phrase ”as appropriate to the medium, genre, and market 862

niche” might prompt some anxiety, as it leaves things relatively undefined. But
theres more method here than you might expect: The definition of ”sampling” or
”collage” varies across different media. Rather than try to define all possible

Two Bits Christopher M. Kelty 232

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

scenarios (including ones that havent happened yet)which would have the effect
of restricting the types of re-uses to a limited setwe took the more laissez faire
approach.
This sort of deference to community valuesthink of it as ”punting to culture”is 863

very common in everyday business and contract law. The idea is that when
lawyers have trouble defining the specialized terms of certain subcultures, they
should get out of the way and let those subcultures work them out. Its probably
not a surprise Creative Commons likes this sort of notion a lot.346

As in the case of reuse in Connexions, sampling in the music world can imply a 864

number of different, perhaps overlapping, customary meanings of what is acceptable
and what is not. For Connexions, the trick was to differentiate the cases wherein
collaboration should be encouraged from the cases wherein the legal right to
”sample”to fork or to create a derived workwas the appropriate course of action. For
Creative Commons, the very structure of the licenses attempts to capture this
distinction as such and to allow for individuals to make determinations about the
meaning of sampling themselves.347

At stake, then, is the construction of both technologies and legal licenses that, as 865

Brent and Rich would assert, ”make it easy for users to do the right thing.” The ”right
thing,” however, is precisely what goes unstated: the moral and technical order that
guides the design of both licenses and tools. Connexions users are given tools that
facilitate citation, acknowledgment, attribution, and certain kinds of reuse instead of
tools that privilege anonymity or facilitate proliferation or encourage nonreciprocal
collaborations. By the same token, Creative Commons licenses, while legally binding,
are created with the aim of changing norms: they promote attribution and citation;
they promote fair use and clearly designated uses; they are written to give users
flexibility to decide what kinds of things should be allowed and what kinds shouldnt.
Without a doubt, the ”right thing” is right for some people and not for othersand it is
thus political. But the criteria for what is right are not [pg300] merely political; the

346Message from the cc-sampling mailing list, Glenn Brown, Subject: BACKGROUND: ”AS APPROPRIATE
TO THE MEDIUM, GENRE, AND MARKET NICHE,” 23 May 2003,
⌜ http://lists.ibiblio.org/pipermail/cc-sampling/2003-May/000004.html ⌟ .
347Sampling offers a particularly clear example of how Creative Commons differs from the existing
practice and infrastructure of music creation and intellectual-property law. The music industry has
actually long recognized the fact of sampling as something musicians do and has attempted to deal with
it by making it an explicit economic practice; the music industry thus encourages sampling by
facilitating the sale between labels and artists of rights to make a sample. Record companies will
negotiate prices, lengths, quality, and quantity of sampling and settle on a price.
This practice is set opposite the assumption, also codified in law, that the public has a right to a fair use
of copyrighted material without payment or permission. Sampling a piece of music might seem to fall
into this category of use, except that one of the tests of fair use is that the use not impact any existing
market for such uses, and the fact that the music industry has effectively created a market for the
buying and selling of samples means that sampling now routinely falls outside the fair uses codified in
the statute, thus removing sampling from the domain of fair use. Creative Commons licenses, on the
other hand, say that owners should be able to designate their material as ”sample-able,” to give
permission ahead of time, and by this practice to encourage others to do the same. They give an
”honorable” meaning to the practice of sampling for free, rather than the dishonorable one created by
the industry. It thus becomes a war over the meaning of norms, in the law-and-economics language of
Creative Commons and its founders.

Two Bits Christopher M. Kelty 233

http://lists.ibiblio.org/pipermail/cc-sampling/2003-May/000004.html
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

criteria are what constitute the affinity of these geeks in the first place, what makes
them a recursive public. They see in these instruments the possibility for the creation
of authentic publics whose role is to stand outside power, outside markets, and to
participate in sovereignty, and through this participation to produce liberty without
sacrificing stability.

Conclusion 866

What happens when geeks modulate the practices that make up Free Software? What 867

is the intuition or the cultural significance of Free Software that makes people want to
emulate and modulate it? Creative Commons and Connexions modulate the practices
of Free Software and extend them in new ways. They change the meaning of shared
source code to include shared nonsoftware, and they try to apply the practices of
license writing, coordination, and openness to new domains. At one level, such an
activity is fascinating simply because of what it reveals: in the case of Connexions, it
reveals the problem of determining the finality of a work. How should the authority,
stability, and reliability of knowledge be assessed when work can be rendered
permanently modifiable? It is an activity that reveals the complexity of the system of
authorization and evaluation that has been built in the past.
The intuition that Connexions and Creative Commons draw from Free Software is an 868

intuition about the authority of knowledge, about a reorientation of knowledge and
power that demands a response. That response needs to be technical and legal, to be
sure, but it also needs to be publica response that defines the meaning of finality
publicly and openly and makes modifiability an irreversible aspect of the process of
stabilizing knowledge. Such a commitment is incompatible with the provision of stable
knowledge by unaccountable private parties, whether individuals or corporations or
governments, or by technical fiat. There must always remain the possibility that
someone can question, change, reuse, and modify according to their needs.

Two Bits Christopher M. Kelty 234

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Conclusion 869

The Cultural Consequences of Free Software 870

Free Software is changing. In all aspects it looks very different from when I started, 871

and in many ways the Free Software described herein is not the Free Software readers
will encounter if they turn to the Internet to find it. But how could it be otherwise? If
the argument I make in Two Bits is at all correct, then modulation must constantly be
occurring, for experimentation never seeks its own conclusion. A question remains,
though: in changing, does Free Software and its kin preserve the imagination of moral
and technical order that created it? Is the recursive public something that survives,
orders, or makes sense of these changes? Does Free Software exist for more than its
own sake?
In Two Bits I have explored not only the history of Free Software but also the question 872

of where such future changes will have come [pg302] from. I argue for seeing continuity
in certain practices of everyday life precisely because the Internet and Free Software
pervade everyday life to a remarkable, and growing, degree. Every day, from here to
there, new projects and ideas and tools and goals emerge everywhere out of the
practices that I trace through Free Software: Connexions and Creative Commons,
open access, Open Source synthetic biology, free culture, access to knowledge (a2k),
open cola, open movies, science commons, open business, Open Source yoga, Open
Source democracy, open educational resources, the One Laptop Per Child project, to
say nothing of the proliferation of wiki-everything or the ”peer production” of
scientific data or consumer servicesall new responses to a widely felt reorientation of
knowledge and power.348 How is one to know the difference between all these things?
How is one to understand the cultural significance and consequence of them? Can
one distinguish between projects that promote a form of public sphere that can direct
the actions of our society versus those that favor corporate, individual, or hierarchical
control over decision making?
Often the first response to such emerging projects is to focus on the promises and 873

ideology of the people involved. On the one hand, claiming to be open or free or
public or democratic is something nearly everyone does (including unlikely candidates
such as the defense intelligence agencies of the United States), and one should
therefore be suspicious and critical of all such claims.349 While such arguments and
ideological claims are important, it would be a grave mistake to focus only on these
statements. The ”movement”the ideological, critical, or promissory aspectis just one
component of Free Software and, indeed, the one that has come last, after the other
practices were figured out and made legible, replicable, and modifiable. On the other
hand, it is easy for geeks and Free Software advocates to denounce emerging

348See ⌜ http://cnx.org ⌟ , ⌜ http://www.creativecommons.org ⌟ , ⌜ http://www.earlham.edu/ peters/fos/overview.htm ⌟ ,
⌜ http://www.biobricks.org ⌟ , ⌜ http://www.freebeer.org ⌟ , ⌜ http://freeculture.org ⌟ , ⌜ http://www.cptech.org/a2k ⌟ ,
[pg348] ⌜ http://www.colawp.com/colas/400/cola467_recipe.html ⌟ , ⌜ http://www.elephantsdream.org ⌟ ,
⌜ http://www.sciencecommons.org ⌟ , ⌜ http://www.plos.org ⌟ , ⌜ http://www.openbusiness.cc ⌟ ,
⌜ http://www.yogaunity.org ⌟ , ⌜ http://osdproject.com ⌟ , ⌜ http://www.hewlett.org/Programs/Education/oer/ ⌟ , and
⌜ http://olpc.com ⌟ .
349See Clive Thompson, ”Open Source Spying,” New York Times Magazine, 3 December 2006, 54.

Two Bits Christopher M. Kelty 235

http://cnx.org
http://www.creativecommons.org
http://www.earlham.edu/~peters/fos/overview.htm
http://www.biobricks.org
http://www.freebeer.org
http://freeculture.org
http://www.cptech.org/a2k
http://www.colawp.com/colas/400/cola467_recipe.html
http://www.elephantsdream.org
http://www.sciencecommons.org
http://www.plos.org
http://www.openbusiness.cc
http://www.yogaunity.org
http://osdproject.com
http://www.hewlett.org/Programs/Education/oer/
http://olpc.com
https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

projects, to say, ”But that isnt really Open Source or Free Software.” And while it may
be tempting to fix the definition of Free Software once and for all in order to ensure a
clear dividing line between the true sons and the carpetbaggers, to do so would
reduce Free Software to mere repetition without difference, would sacrifice its most
powerful and distinctive attribute: its responsive, emergent, public character.
But what questions should one ask? Where should scholars or curious onlookers focus 874

their attention in order to see whether or not a recursive public is at work? Many of
these questions are simple, [pg303] practical ones: are software and networks involved
at any level? Do the participants claim to understand Free Software or Open Source,
either in their details or as an inspiration? Is intellectual-property law a key problem?
Are participants trying to coordinate each other through the Internet, and are they
trying to take advantage of voluntary, self-directed contributions of some kind? More
specifically, are participants modulating one of these practices? Are they thinking
about something in terms of source code, or source and binary? Are they changing or
creating new forms of licenses, contracts, or privately ordered legal arrangements?
Are they experimenting with forms of coordinating the voluntary actions of large
numbers of unevenly distributed people? Are the people who are contributing aware
of or actively pursuing questions of ideology, distinction, movement, or opposition?
Are these practices recognized as something that creates the possibility for affinity,
rather than simply arcane ”technical” practices that are too complex to understand or
appreciate?
In the last few years, talk of ”social software” or ”Web 2.0” has dominated the circuit 875

of geek and entrepreneur conferences and discussions: Wikipedia, MySpace, Flickr,
and YouTube, for example. For instance, there are scores and scores of ”social” music
sites, with collaborative rating, music sharing, music discovery, and so forth. Many of
these directly use or take inspiration from Free Software. For all of them, intellectual
property is a central and dominating concern. Key to their novelty is the leveraging
and coordinating of massive numbers of people along restricted lines (i.e., music
preferences that guide music discovery). Some even advocate or lobby for free(er)
access to digital music. But they are not (yet) what I would identify as recursive
publics: most of them are commercial entities whose structure and technical
specifications are closely guarded and not open to modification. While some such
entities may deal in freely licensed content (for instance, Creative Commons-licensed
music), few are interested in allowing strangers to participate in, modulate, or modify
the system as such; they are interested in allowing users to become consumers in
more and more sophisticated ways, and not necessarily in facilitating a public culture
of music. They want information and knowledge to be free, to be sure, but not
necessarily the infrastructure that makes that information available and knowledge
possible. Such entities lack the ”recursive” commitment. [pg304]

By contrast, some corners of the open-access movement are more likely to meet this 876

criteria. As the appellation suggests, participants see it as a movement, not a
corporate or state entity, a movement founded on practices of copyleft and the
modulation of Free Software licensing ideas. The use of scientific data and the tools
for making sense of open access are very often at the heart of controversy in science
(a point often reiterated by science and technology studies), and so there is often an

Two Bits Christopher M. Kelty 236

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

argument about not only the availability of data but its reuse, modification, and
modulation as well. Projects like the BioBricks Foundation (biobricks.org) and new
organizations like the Public Library of Science (plos.org) are committed to both
availability and certain forms of collective modification. The commitment to
becoming a recursive public, however, raises unprecedented issues about the nature
of quality, reliability, and finality of scientific data and resultsquestions that will
reverberate throughout the sciences as a result.
Farther afield, questions of ”traditional heritage” claims, the compulsory licensing of 877

pharmaceuticals, or new forms of ”crowdsourcing” in labor markets are also open to
analysis in the terms I offer in Two Bits.350 Virtual worlds like Second Life, ”a 3D digital
world imagined, created, and owned by its residents,” are increasingly laboratories
for precisely the kinds of questions raised here: such worlds are far less virtual than
most people realize, and the experiments conducted there far more likely to migrate
into the so-called real world before we know itincluding both economic and
democratic experiments.351 How far will Second Life go in facilitating a recursive
public sphere? Can it survive both as a corporation and as a ”world”? And of course,
there is the question of the ”blogosphere” as a public sphere, as a space of opinion
and discussion that is radically open to the voices of massive numbers of people.
Blogging gives the lie to conventional journalisms self-image as the public sphere, but
it is by no means immune to the same kinds of problematic dynamics and
polarizations, no more ”rational-critical” than FOX News, and yet . . .
Such examples should indicate the degree to which Two Bits is focused on a much 878

longer time span than simply the last couple of years and on much broader issues of
political legitimacy and cultural change. Rather than offer immediate policy
prescriptions or seek to change the way people think about an issue, I have
approached [pg305] Two Bits as a work of history and anthropology, making it less
immediately applicable in the hopes that it is more lastingly usable. The stories I have
told reach back at least forty years, if not longer. While it is clear that the Internet as
most people know it is only ten to fifteen years old, it has been ”in preparation” since
at least the late 1950s. Students in my classesespecially hip geeks deep in Free
Software apprenticeshipare bewildered to learn that the arguments and usable pasts
they are rehearsing are refinements and riffs on stories that are as old or older than
their parents. This deeper stability is where the cultural significance of Free Software
lies: what difference does Free Software today introduce with respect to knowledge
and power yesterday?
Free Software is a response to a problem, in much the same way that the Royal 879

Society in the sixteenth century, the emergence of a publishing industry in the
eighteenth century, and the institutions of the public sphere in the eighteenth and
nineteenth centuries were responses. They responded to the collective challenge of
creating regimes of governance that requiredand encouragedreliable empirical

350See especially Christen, ”Tracking Properness” and ”Gone Digital”; Brown, Who Owns Native Culture?
and ”Heritage as Property.” Crowdsourcing fits into other novel forms of labor arrangements, ranging
from conventional outsourcing and off-shoring to newer forms of bodyshopping and ”virtual migration”
(see Aneesh, Virtual Migration; Xiang, ”Global Bodyshopping”).
351Golub, ”Copyright and Taboo”; Dibbell, Play Money.

Two Bits Christopher M. Kelty 237

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

knowledge as a basis for their political legitimacy. Such political legitimacy is not an
eternal or theoretical problem; it is a problem of constant real-world practice in
creating the infrastructures by which individuals come to inhabit and understand their
own governance, whether by states, corporations, or machines. If power seeks
consent of the governedand especially the consent of the democratic, self-governing
kind that has become the global dominant ideal since the seventeenth centuryit must
also seek to ensure the stability and reliability of the knowledge on which that
consent is propped.
Debates about the nature and history of publics and public spheres have served as 880

one of the main arenas for this kind of questioning, but, as I hope I have shown here,
it is a question not only of public spheres but of practices, technologies, laws, and
movements, of going concerns which undergo modulation and experimentation in
accord with a social imagination of order both moral and technical. ”Recursive public”
as a concept is not meant to replace that of public sphere. I intend neither for actors
nor really for many scholars to find it generally applicable. I would not want to see it
suddenly discovered everywhere, but principally in tracking the transformation,
proliferation, and differentiation of Free Software and its derivatives. [pg306]

Several threads from the three parts of Two Bits can now be tied together. The 881

detailed descriptions of Free Software and its modulations should make clear that (1)
the reason the Internet looks the way it does is due to the work of figuring out Free
Software, both before and after it was recognized as such; (2) neither the Internet nor
the computer is the cause of a reorientation of knowledge and power, but both are
tools that render possible modulations of settled practices, modulations that reveal a
much older problem regarding the legitimacy of the means of circulation and
production of knowledge; (3) Free Software is not an ethical stance, but a practical
response to the revelation of these older problems; and (4) the best way to
understand this response is to see it as a kind of public sphere, a recursive public that
is specific to the technical and moral imaginations of order in the contemporary world
of geeks.
It is possible now to return to the practical and political meaning of the ”singularity” 882

of the Internet, that is, to the fact that there is only one Internet. This does not mean
that there are no other networks, but only that the Internet is a singular entity and
not an instance of a general type. How is it that the Internet is open in the same way
to everyone, whether an individual or a corporate or a national entity? How has it
become extensible (and, by extension, defensible) by and to everyone, regardless of
their identity, locale, context, or degree of power?
The singularity of the Internet is both an ontological and an epistemological fact; it is 883

a feature of the Internets technical configurations and modes of ordering the actions
of humans and machines by protocols and software. But it is also a feature of the
technical and moral imaginations of the people who build, manage, inhabit, and
expand the Internet. Ontologically, the creation and dissemination of standardized
protocols, and novel standard-setting processes are at the heart of the story. In the
case of the Internet, differences in standards-setting processes are revealed clearly in
the form of the famous Request for Comments system of creating, distributing, and
modifying Internet protocols. The RFC system, just as much as the Geneva-based

Two Bits Christopher M. Kelty 238

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

International Organization for Standards, reveal the fault lines of international
legitimacy in complex societies dependent on networks, software, and other
high-tech forms of knowledge production, organization, and governance. The
legitimacy of standards has massive significance for the abilities of individual actors
to participate in their own recursive publics, whether they [pg307] be publics that
address software and networks or those that address education and development.
But like the relationship between ”law on the books” and ”law in action,” standards
depend on the coordinated action and order of human practices.
Whats more, the seemingly obvious line between a legitimate standard and a 884

marketable product based on these standards causes nothing but trouble. The case
of open systems in the 1980s high-end computer industry demonstrates how the
logic of standardization is not at all clearly distinguished from the logic of the market.
The open-systems battles resulted in novel forms of cooperation-within-competition
that sought both standardization and competitive advantage at the same time. Open
systems was an attempt to achieve a kind of ”singularity,” not only for a network but
for a market infrastructure as well. Open systems sought ways to reform technologies
and markets in tandem. What it ignored was the legal structure of intellectual
property. The failure of open systems reveals the centrality of the moral and technical
order of intellectual propertyto both technology and marketsand shows how a
reliance on this imagination of order literally renders impossible the standardization
of singular market infrastructure. By contrast, the success of the Internet as a market
infrastructure and as a singular entity comes in part because of the recognition of the
limitations of the intellectual-property systemand Free Software in the 1990s was the
main experimental arena for trying out alternatives.
The singularity of the Internet rests in turn on a counterintuitive multiplicity: the 885

multiplicity of the UNIX operating system and its thousands of versions and imitations
and reimplementations. UNIX is a great example of how novel, unexpected kinds of
order can emerge from high-tech practices. UNIX is neither an academic (gift) nor a
market phenomenon; it is a hybrid model of sharing that emerged from a very
unusual technical and legal context. UNIX demonstrates how structured practices of
sharing produce their own kind of order. Contrary to the current scholarly consensus
that Free Software and its derivatives are a kind of ”shadow economy” (a ”sharing”
economy, a ”peer production” economy, a ”noncommercial” economy), UNIX was
never entirely outside of the mainstream market. The meanings of sharing,
distribution, and profitability are related to the specific technical, legal, and
organizational context. Because AT&T was prevented from commercializing UNIX,
because UNIX users were keen to expand and [pg308] adapt it for their own uses, and
because its developers were keen to encourage and assist in such adaptations, UNIX
proliferated and differentiated in ways that few commercial products could have. But
it was never ”free” in any sense. Rather, in combination with open systems, it set the
stage for what ”free” could come to mean in the 1980s and 1990s. It was a nascent
recursive public, confronting the technical and legal challenges that would come to
define the practices of Free Software. To suggest that it represents some kind of
”outside” to a functioning economic market based in money is to misperceive how
transformative of markets UNIX and the Internet (and Free Software) have been. They

Two Bits Christopher M. Kelty 239

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

have initiated an imagination of moral and technical order that is not at all opposed to
ideologies of market-based governance. Indeed, if anything, what UNIX and Free
Software represent is an imagination of how to change an entire market-based
governance structurenot just specific markets in thingsto include a form of public
sphere, a check on the power of existing authority.
UNIX and Open Systems should thus be seen as early stages of a collective technical 886

experiment in transforming our imaginations of order, especially of the moral order of
publics, markets, and self-governing peoples. The continuities and the gradualness of
the change are more apparent in these events than any sudden rupture or
discontinuity that the ”invention of the Internet” or the passing of new
intellectual-property laws might suggest. The ”reorientation of knowledge and power”
is more dance than earthquake; it is stratified in time, complex in its movements, and
takes an experimental form whose concrete traces are the networks, infrastructures,
machines, laws, and standards left in the wake of the experiments.
Availability, reusability, and modifiability are at the heart of this reorientation. The 887

experiments of UNIX and open systems would have come to nothing if they had not
also prompted a concurrent experimentation with intellectual-property law, of which
the copyleft license is the central and key variable. Richard Stallmans creation of GNU
EMACS and the controversy over propriety that it engendered was in many ways an
attempt to deal with exactly the same problem that UNIX vendors and open-systems
advocates faced: how to build extensibility into the software marketexcept that
Stallman never saw it as a market. For him, software was and is part of the human
itself, constitutive of our very freedom and, hence, inalienable. Extending software,
through collective mutual [pg309] aid, is thus tantamount to vitality, progress, and
self-actualization. But even for those who insist on seeing software as mere product,
the problem of extensibility remains. Standardization, standards processes, and
market entry all appear as political problems as soon as extensibility is deniedand
thus the legal solution represented by copyleft appears as an option, even though it
raises new and troubling questions about the nature of competition and
profitability.
New questions about competition and profitability have emerged from the massive 888

proliferation of hybrid commercial and academic forms, forms that bring with them
different traditions of sharing, credit, reputation, control, creation, and dissemination
of knowledge and products that require it. The new economic demands on the
universityall too easily labeled neoliberalization or corporatizationmirror changing
demands on industry that it come to look more like universities, that is, that it give
away more, circulate more, and cooperate more. The development of UNIX, in its
details, is a symptom of these changes, and the success of Free Software is an
unambiguous witness to them.
The proliferation of hybrid commercial-academic forms in an era of modifiability and 889

reusability, among the debris of standards, standards processes, and new
experiments in intellectual property, results in a playing field with a thousand
different games, all of which revolve around renewed experimentation with
coordination, collaboration, adaptability, design, evolution, gaming, playing, worlds,
and worlding. These games are indicative of the triumph of the American love of

Two Bits Christopher M. Kelty 240

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

entrepreneurialism and experimentalism; they relinquish the ideals of planning and
hierarchy almost absolutely in favor of a kind of embedded, technically and legally
complex anarchism. It is here that the idea of a public reemerges: the ambivalence
between relinquishing control absolutely and absolute distrust of government by the
few. A powerful public is a response, and a solution, so long as it remains
fundamentally independent of control by the few. Hence, a commitment, widespread
and growing, to a recursive public, an attempt to maintain and extend the kinds of
independent, authentic, autotelic public spheres that people encounter when they
come to an understanding of how Free Software and the Internet have evolved.
The open-access movement, and examples like Connexions, are attempts at 890

maintaining such publics. Some are conceived as bulwarks [pg310] against encroaching
corporatization, while others see themselves as novel and innovative, but most share
some of the practices hashed out in the evolution of Free Software and the Internet.
In terms of scholarly publishing and open access, the movement has reignited
discussions of ethics, norms, and method. The Mertonian ideals are in place once
more, this time less as facts of scientific method than as goals. The problem of
stabilizing collective knowledge has moved from being an inherent feature of science
to being a problem that needs our attention. The reorientation of knowledge and
power and the proliferation of hybrid commercial-academic entities in an era of
massive dependence on scientific knowledge and information leads to a question
about the stabilization of that knowledge.
Understanding how Free Software works and how it has developed along with the 891

Internet and certain practices of legal and cultural critique may be essential to
understanding the reliable foundation of knowledge production and circulation on
which we still seek to ground legitimate forms of governance. Without Free Software,
the only response to the continuing forms of excess we associate with illegitimate,
unaccountable, unjust forms of governance might just be mute cynicism. With it, we
are in possession of a range of practical tools, structured responses and clever ways
of working through our complexity toward the promises of a shared imagination of
legitimate and just governance. There is no doubt room for critiqueand many scholars
will demand itbut scholarly critique will have to learn how to sit, easily or uneasily,
with Free Software as critique. Free Software can also exclude, just as any public or
public sphere can, but this is not, I think, cause for resistance, but cause for joining.
The alternative would be to create no new rules, no new practices, no new
proceduresthat is, to have what we already have. Free Software does not belong to
geeks, and it is not the only form of becoming public, but it is one that will have a
profound structuring effect on any forms that follow.

Two Bits Christopher M. Kelty 241

https://twobits.net
https://kelty.org/

Acknowledgement 892

Two Bits Christopher M. Kelty 242

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Acknowledgment 893

Parts of this book have been published elsewhere. A much earlier version of chapter 1 894

was published as ”Geeks, Social Imaginaries and Recursive Publics,” Cultural
Anthropology 20.2 (summer 2005); chapter 6 as ”The EMACS Controversy,” in Mario
Biagioli, Martha Woodmansee, and Peter Jaszi, eds., Contexts of Invention
(forthcoming); and parts of chapter 9 as ”Punt to Culture,” Anthropological Quarterly
77.3.

Two Bits Christopher M. Kelty 243

https://twobits.net
https://kelty.org/

Library of Congress 895

Two Bits Christopher M. Kelty 244

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Library of Congress Catalog 896

christopher m. kelty 897

is an assistant professor of anthropology
at Rice University.

Library of Congress Cataloging-in-Publication Data
Kelty, Christopher M.

Two bits :
the cultural significance of free software / Christopher M. Kelty. p. cm. –(Experimental futures)

Includes bibliographical references and index.
ISBN-13: 978-0-8223-4242-7 (cloth :

alk. paper)
ISBN-13: 978-0-8223-4264-9 (pbk. :

alk. paper)
1. Information society. 2. Open source softwareSocial aspects. I. Title.
HM851K45 2008
303.48’33dc22 2007049447

Endnotes

Two Bits Christopher M. Kelty 245

https://twobits.net
https://kelty.org/

Bibliography 899

Janet Abbate, Brian Kahin "Standards Policy for Information Infrastructure", 1995, MIT 900

Press, Cambridge, Mass..
Janet Abbate "Inventing the Internet", 1999, MIT Press, Cambridge, Mass. 901

Harold Abelson, Gerald J. Sussman "The Structure and Interpretation of Computer 902

Programs", 1985, MIT Press, Cambridge, Mass..
Atsushi Akera "Volunteerism and the Fruits of Collaboration: The IBM User Group 903

SHARE", Technology and Culture, 2001-10, 710-736.
Atsushi Akera, Frederik Nebeker "From 0 to 1: An Authoritative History of Modern 904

Computing", 2002, Oxford University Press, New York.
Benedict Anderson "Imagined Communities: Reflections on the Origins and Spread of 905

Nationalism", 1983, Verso, London.
Jane Anderson, Kathy Bowery "The Imaginary Politics of Access to Knowledge", 906

2006-04, 20-23, Cleveland, Ohio.
A. Aneesh "Virtual Migration: The Programming of Globalization", 2006, Duke 907

University Press, Durham, N.C..
Hannah Arendt "The Human Condition", 1958, University of Chicago Press. 908

Jack Balkin "Cultural Software: A Theory of Ideology", 1998, Yale University Press„ 909

New Haven, Conn..
Richard Baraniuk, W. Joseph King "Connexions: Sharing Knowledge and Building 910

Communities", Sloan-C Review: Perspectives in Quality Online Education, 4.9,
2005-09, [http://www.aln.org/publications/view/v4n9/coverv4n9.htm].

Richard Barbrook, Andy Cameron "The California Ideology", Science as Culture, 26, 911

1996, 44-72.
Thierry Bardini "Bootstrapping: Douglas Engelbart, Co-evolution and the Origins of 912

Personal Computing", 2001, Stanford University Press, Stanford, Calif..
John Perry Barlow "The Economy of Ideas", 2.3, 1994-03. 913

Andrew Barry "Political Machines: Governing a Technological Society", 2001, Athlone 914

Press„ London.
Deborah Battaglia "For Those Who Are Not Afraid of the Future: Raëlian Clonehood in 915

the Public Sphere", E.T. Culture: Anthropology in OuterspacesDeborah Battaglia,
2005, 149-79, Duke University Press, Durham, N.C..

Yochai Benkler "Coases Penguin, or Linux and the Nature of the Firm", Yale Law 916

Journal, 112.3, 2002, 369-446.
Yochai Benkler "Sharing Nicely: On Shareable Goods and the Emergence of Sharing as 917

a Modality of Economic Production", Yale Law Journal, 114.2, 2004, 273-358.

Two Bits Christopher M. Kelty 246

https://twobits.net
https://kelty.org/

Yochai Benkler "The Wealth of Networks: How Social Production Transforms Markets 918

and Freedom", 2006, Yale University Press, New Haven, Conn..
Thomas J. Jr. Bergin, Richard G. Jr. Gibson "History of Programming Languages 2", 919

1996, Association for Computing Machinery Press, New York.
Tim Berners-Lee, Mark Fischetti "Weaving the Web: The Original Design and Ultimate 920

Destiny of the World Wide Web by Its Inventor", 1999, Harper San Francisco, San
Francisco.

Mario. Biagioli "Galileo, Courtier: The Practice of Science in the Culture of Absolutism", 921

1993, University of Chicago Press, Chicago.
Pablo Boczkowski "Digitizing the News: Innovation in Online Newspapers", 2004, MIT 922

Press, Cambridge, Mass..
David Bollier "Silent Theft: The Private Plunder of Our Common Wealth", 2002, 923

Routledge, New York.
George Bornstein, Ralph G. Williams "Palimpsest: Editorial Theory in the Humanities", 924

1993, University of Michigan Press, Ann Arbor.
Paulina Borsook "Cyberselfish: A Critical Romp through the Terribly Libertarian Culture 925

of High Tech", 2000, Public Affairs, New York.
Geoffrey C. Bowker, Susan Leigh Star "Sorting Things Out: Classification and Its 926

Consequences", 1999, MIT Press, Cambridge, Mass..
Geoffrey Bowker "Memory Practices in the Sciences", 2006, MIT Press, Cambridge, 927

Mass..
James Boyle "A Politics of Intellectual Property: Environmentalism for the Net?", Duke 928

Law Journal, 47.1, 1997-10, 87-116.
James Boyle "Conservatives and Intellectual Property", Engage, 1, 2000-04, 929

[http://www.law.duke.edu/boylesite/Federalist.htm].
James Boyle "The Second Enclosure Movement and the Construction of the Public 930

Domain", 66.1-2 (winter-spring), ”The Public Domain”James Boyle, 2003, 33-74.
James Boyle "Mertonianism Unbound? Imagining Free, Decentralized Access to Most 931

Cultural and Scientific Material", Understanding Knowledge as a Common: From
Theory to PracticeCharlotte Hess, Elinor Ostrom, 2006, 123-44, MIT Press,
Cambridge, Mass., [http://www.james-boyle.com/mertonianism.pdf].

Gerald. Brock "The Second Information Revolution", 2003, Harvard University Press, 932

Cambridge, Mass..
Frederick Brooks "The Mythical Man-month: Essays on Software Engineering", 1975, 933

Addison-Wesley, Reading, Mass.
Michael Brown "Who Owns Native Culture?", 2003, Harvard University Press, 934

Cambridge, Mass..

Two Bits Christopher M. Kelty 247

https://twobits.net
https://kelty.org/

Michael Brown "Heritage as Property", Property in Question: Value Transformation in 935

the Global EconomyKatherine Verdery, Caroline Humphrey, 2004, 49-68, Berg,
Oxford.

Craig Calhoun "Habermas and the Public Sphere", 1992, MIT Press, Cambridge, Mass.. 936

Michel Callon "Some Elements of a Sociology of Translation: Domestication of the 937

Scallops and the Fishermen of St Brieuc Bay", Power, Action and Belief: A New
Sociology of KnowledgeJohn Law, 1986, 196-233, Routledge and Kegan Paul,
London.

Michel Callon "The Laws of the Markets", 1998, Blackwell, London. 938

Michel Callon, Cécile Méadel, Vololona Rabeharisoa "The Economy of Qualities", 939

Economy and Society, 31.2, 2002-05, 194-217.
Martin Campbell-Kelly, William Aspray "Computer: A History of the Information 940

Machine", 1996, Basic Books, New York.
Martin Campbell-Kelly "From Airline Reservations to Sonic the Hedgehog: A History of 941

the Software Industry", 2003, MIT Press, Cambridge, Mass..
Paul D. Carrington, Erika King "Law and the Wisconsin Idea", Journal of Legal 942

Education, 47, 1997, 297.
Manuel Castells "The Rise of the Network Society", 1996, Blackwell, Cambridge, Mass.. 943

Manuel Castells "The Internet Galaxy: Reflections on the Internet, Business and 944

Society", 2001, Oxford University Press, New York.
Cornelius Castoriadis "The Imaginary Institution of Society", 1987, MIT Press, 945

Cambridge, Mass..
Vinton G. Cerf, Robert Kahn "A Protocol for Packet Network Interconnection", IEEE 946

Transactions on Communications, 22.5, 1974-05, 637-48.
Owen Chadwick "The Early Reformation on the Continent", 2001, Oxford University 947

Press, Oxford.
Anita Chan "Coding Free Software, Coding Free States: Free Software Legislation and 948

the Politics of Code in Peru", Anthropological Quarterly, 77.3 (summer), 2004,
531-45.

Roger Chartier "The Cultural Uses of Print in Early Modern France", 1988, Princeton 949

University Press, Princeton.
Roger Chartier "The Order of Books: Readers, Authors, and Libraries in Europe 950

between the Fourteenth and Eighteenth Centuries", 1994, Stanford University
Press, Stanford, Calif..

Partha Chatterjee "A Response to Taylors Modes of Civil Society.", Public Culture, 3.1, 951

1990, 120-21.
Kim Christen "Gone Digital: Aboriginal Remix and the Cultural Commons", 952

International Journal of Cultural Property, 12, 2005-08, 315-45.

Two Bits Christopher M. Kelty 248

https://twobits.net
https://kelty.org/

Kim Christen "Tracking Properness: Repackaging Culture in a Remote Australian 953

Town", Cultural Anthropology, 21.3, 2006-08, 416-46.
Clayton Christensen "The Innovators Dilemma: When New Technologies Cause Great 954

Firms to Fail", 1997, Harvard Business School Press, Boston.
Wendy Hui Kyong Chun "Control and Freedom: Power and Paranoia in the Age of Fiber 955

Optics", 2006, MIT Press, Cambridge, Mass..
David Clark "The Design Philosophy of the DARPA Internet Protocols 1988", Computer 956

Communications: Architectures, Protocols, and StandardsWilliam Stallings, 1992,
54-62, IEEE Computer Society Press, Los Alamitos, Calif..

Julie Cohen, Lydia Pallas Loren, Ruth Gana Okediji, Maureen ORourke "Copyright in a 957

Global Information Economy", 2001, Aspen Law and Business Publishers, Aspen,
Colo..

E. Gabriella Coleman "The Political Agnosticism of Free and Open Source Software and 958

the Inadvertent Politics of Contrast", Anthropological Quarterly, 77.3 (summer),
2004, 507-19.

E. Gabriella Coleman "The Social Construction of Freedom: Hackers, Ethics and the 959

Liberal Tradition", 2005, University of Chicago.
Jean Comaroff, John Comaroff "Ethnography and the Historical Imagination", 1992, 960

Westview, Boulder, Colo..
Douglas E. Comer "Operating System Design", 1984, Prentice Hall, Englewood Cliffs, 961

N.J..
Douglas E. Comer "Internetworking with TCP/IP", 2000, Prentice Hall, Upper Saddle 962

River, N.J..
Rosemary Coombe, Andrew Herman "Rhetorical Virtues: Property, Speech, and the 963

Commons on the World-Wide Web", Anthropological Quarterly, 77.3 (summer),
2004, 559-574.

Rosemary Coombe, Andrew Herman "Your Second Life? Goodwill and the 964

Performativity of Intellectual Property in Online Digital Gaming", Cultural Studies,
20.2-3 (March-May), 2006-03, 184-210.

Patricia Crain "The Story of A: The Alphabetization of America from The New England 965

Primer to The Scarlet Letter", 2000, Stanford University Press, Stanford, Calif..
Terry A. Critchley, K. C. Batty "Open Systems: The Reality", 1993, Prentice Hall, 966

Englewood Cliffs, N.J..
Charis Cussins "Ontological Choreography: Agency through Objectification in Infertility 967

Clinics", Social Studies of Science, 26.3, 1996, 575-610.
Lorraine Daston "Biographies of Scientific Objects", 2000, University of Chicago Press, 968

Chicago.
Martin Davis "Engines of Logic: Mathematicians and the Origin of the Computer", 969

2001, W. W. Norton.

Two Bits Christopher M. Kelty 249

https://twobits.net
https://kelty.org/

Manuel DeLanda "A Thousand Years of Non-linear History", 1997, Zone Books, New 970

York.
Manuel DeLanda "Open Source: A Movement in Search of a Philosophy", Paper 971

presented to the Institute for Advanced Study, 2001, Princeton, N.J.,
[http://www.cddc.vt.edu/host/delanda/pages/opensource.htm].

Manuel DeLanda "Intensive Science and Virtual Philosophy", 2002, Continuum Press, 972

London.
Jodi Dean "Why the Net Is Not a Public Sphere", Constellations, 10.1, 2003-03. 973

John Dewey "The Public and Its Problems", 1927, Sage Books / Swallow Press, Chicago. 974

John Dewey "Liberalism and Social Action", 1935, G. P. Putnams Sons, New York. 975

John Dewey "Freedom and Culture", 1939, Prometheus Books, Amherst, N.Y.. 976

Paul DiMaggio, Esther Hargittai, C. Celeste, S. Shafer "From Unequal Access to 977

Differentiated Use: A Literature Review and Agenda for Research on Digital
Inequality", Social InequalityKathryn Neckerman, 2004, 355-400, Russell Sage
Foundation, New York.

Julian Dibbell "A Rape in Cyberspace", Village Voice, 38.51, 1993-12. 978

Julian Dibbell "Play Money: Or, How I Quit My Day Job and Made Millions Trading 979

Virtual Loot", 2006., Basic Books, New York.
Chris, et al. Dibona "Open Sources: Voices from the Open Source Revolution", 1999, 980

OReilly Press, Sebastopol, Calif..
Gary L. Downey "The Machine in Me: An Anthropologist Sits among Computer 981

Engineers", 1998, Routledge, London.
Richard Doyle "Wetwares: Experiments in Postvital Living", 2003, University of 982

Minnesota Press, Minneapolis.
William Drake "The Internet Religious War", Telecommunications Policy, 17, 1993-12, 983

643-49.
Hubert Dreyfus "On the Internet", 2001, Routledge, London. 984

Joseph Dumit "Picturing Personhood: Brain Scans and Biomedical Identity", 2004, 985

Princeton University Press, Princeton.
Terry Eagleton "The Ideology of the Aesthetic", 1990, Blackwell, Cambridge, Mass.. 986

Terry Eagleton "Ideology: An Introduction", 1991, Verso Books, London. 987

Paul N. Edwards "The Closed World: Computers and the Politics of Discourse in the 988

Cold War", 1996, MIT Press, Cambridge, Mass..
Paul N. Edwards "Infrastructure and Modernity: Force, Time, and Social Organization in 989

the History of Sociotechnical Systems", Modernity and TechnologyThomas Misa,
Philip Brey, Andrew Feenberg, 2003, 185-225, MIT Press, Cambridge, Mass..

Two Bits Christopher M. Kelty 250

https://twobits.net
https://kelty.org/

Elizabeth Eisenstein "The Printing Press as an Agent of Change: Communications and 990

Cultural Transformations in Early Modern Europe", 1979, Cambridge University
Press, Cambridge.

W. Faulkner "Dualisms, Hierarchies and Gender in Engineering", Social Studies of 991

Science, 30.5, 2000, 759-92.
Lucien Febvre, Henri-Jean Martin "The Coming of the Book: The Impact of Printing 992

1450-1800", 1958, Verso, London.
Joseph Feller, Brian Fitzgerald, Scott A. Hissam, Karim R. Lakhani "Perspectives on 993

Free and Open Source Software", 2005, MIT Press, Cambridge, Mass..
Paul Feyerabend "Against Method", 1993, Verso Books, London. 994

Roy T. Fielding "Shared Leadership in the Apache Project", Communications of the 995

ACM, 42.4, 1999-04, 42-43.
Franklin Fischer, M. Folded "Spindled, and Mutilated", 1983, MIT Press, Cambridge, 996

Mass..
Michael M. J. Fischer "Worlding Cyberspace", Critical Anthropology NowGeorge Marcus, 997

1999, 245-304, School for Advanced Research Press, Santa Fe, N.M..
Michael M. J. Fischer "Emergent Forms of Life and the Anthropological Voice", 2003, 998

Duke University Press, Durham, N.C..
Michael M. J. Fischer "Culture and Cultural Analysis as Experimental Systems", 999

Cultural Anthropology, 22.1, 2007-02, 1-65.
Patrice Flichy "The Internet Imaginaire", 2007, MIT Press, Cambridge, Mass.. 1000

Kim Fortun "Advocating Bhopal: Environmentalism, Disaster, New Global Orders", 1001

2003, University of Chicago Press, Chicago.
Kim Fortun, Mike Fortun "Scientific Imaginaries and Ethical Plateaus in Contemporary 1002

U.S. Toxicology", American Anthropologist, 107.1, 2005, 43-54.
Kim Fortun "Figuring Out Ethnography", Fieldwork Isnt What It Used to BeGeorge 1003

Marcus, James Faubion, , University of Chicago Press, Chicago.
Michel Foucault "What Is an Author?", The Foucault ReaderP. Rabinow, 1984, 101-20, 1004

Pantheon Books, New York.
Michel Foucault "What Is Enlightenment?", EthicsPaul Rabinow, 1997, 303-17, New 1005

Press, New York.
Michel Foucault "La naissance de la biopolitique: Cours au Collège de France 1006

(1978-1979)", 2004, Gallimard / Le Seuil, Paris.
Carla Freeman "High Tech and High Heels in the Global Economy", 2000, Duke 1007

University Press, Durham, N.C..
Jo Freeman, Victoria Johnson "Waves of Protest: Social Movements since the Sixties", 1008

1999, Rowman and Littlefield, Lanham, Md..
Peter Galison "How Experiments End", 1987, University of Chicago Press, Chicago. 1009

Two Bits Christopher M. Kelty 251

https://twobits.net
https://kelty.org/

Peter Galison "Image and Logic: The Material Culture of Microphysics", 1997, 1010

University of Chicago Press, Chicago.
Alexander Galloway "Protocol, or How Control Exists after Decentralization", 2004, MIT 1011

Press, Cambridge, Mass..
Mike Gancarz "The Unix Philosophy", 1994, Digital Press, Boston. 1012

Mike Gancarz "Linux and the UNIX Philosophy", 2003, Digital Press, Boston. 1013

Dilip Gaonkar "Toward New Imaginaries: An Introduction", Public Culture, 14.1, 2002, 1014

1-19.
Clifford Geertz "Ideology as a Cultural System", The Interpretation of Cultures, 1973, 1015

193-233, Basic Books, New York.
Luther P. Gerlach, Virginia H. Hine "People, Power, Change: Movements of Social 1016

Transformation", 1970, Bobbs-Merrill, Indianapolis.
Rishab Ayer Ghosh "Cooking Pot Markets: An Economic Model for the Trade in Free 1017

Goods", First Monday, 3.3, 1998,
[http://www.firstmonday.org/issues/issue3_3/ghosh/].

Tarleton Gillespie "Engineering a Principle: End to End in the Design of the Internet", 1018

Social Studies of Science, 36.3, 2006, 427-57.
Alex Golub "Copyright and Taboo", Anthropological Quarterly, 77.3, 2004, 521-30. 1019

Pamela Gray "Open Systems: A Business Strategy for the 1990s", 1991, McGraw-Hill, 1020

London.
Ellen Green, Allison Adam "Virtual Gender: Technology, Consumption and Identity", 1021

2001, Routledge, London.
Ian Green "The Christians ABCs: Catechisms and Catechizing in England c1530-1740", 1022

1996, Oxford University Press, Oxford.
Ian Green "Print and Protestantism in Early Modern England", 2000, Oxford University 1023

Press, Oxford.
Sarah Green, Penny Harvey, Hannah Knox "Scales of Place and Networks: An 1024

Ethnography of the Imperative to Connect through Information and
Communication Technologies", 46.5, 2005-12, 805-26, Current Anthropology.

David Alan Grier, Mary Campbell "A Social History of Bitnet and Listserv 1985-1991", 1025

IEEE Annals of the History of Computing (April-June), 2000-04, 32-41.
David Alan Grier "When Computers Were Human", 2005, Princeton University Press, 1026

Princeton.
Keith Grint, Rosalind Gill "The Gender-Technology Relation: Contemporary Theory and 1027

Research", 1995, Taylor and Francis, London.
Jürgen Habermas "The Structural Transformation of the Public Sphere: An Inquiry into 1028

a Category of Bourgeois Society", 1991, MIT Press, Cambridge, Mass..

Two Bits Christopher M. Kelty 252

https://twobits.net
https://kelty.org/

Katie Hafner "Where Wizards Stay Up Late: The Origins of the Internet", 1998, Simon 1029

and Schuster, New York.
Jim Hamerly, Tom PaquinSusan Walton "Freeing the Source", Open Sources: Voices 1030

from the Open Source RevolutionChris Dibona, 1999, 197-206, OReilly Press,
Sebastopol, Calif..

Garrett Hardin "The Tragedy of the Commons", Science, 162, 1968, 1, 243-48. 1031

Ulf Hashagen "History of Computing - Software Issues"Reinhard Keil-Slawik, Arthur 1032

Norberg, 2002, Springer Verlag, Berlin.
Michael Hauben, Rhonda Hauben "Netizens: On the History and Impact of Usenet and 1033

the Internet", 1997, IEEE Computer Society Press, Los Alamitos, Calif..
Marc Hauser "Moral Minds: How Nature Designed Our Universal Sense of Right and 1034

Wrong", 2006, Ecco Press, New York.
Cori Hayden "When Nature Goes Public: The Making and Unmaking of Bioprospecting 1035

in Mexico", 2003, Princeton University Press, Princeton.
Friedrich A. Hayek "Law, Legislation and Liberty", Vol. 1, Rules and Order, 1970, 1036

University of Chicago Press, Chicago.
Stefan Helmreich "Silicon Second Nature: Culturing Artificial Life in a Digital World", 1037

1998, University of California Press, Berkeley.
Susan C. Herring "Gender and Democracy in Computer-Mediated Communication", 1038

Computerization and Controversy: Value Conflicts and Social ChoicesRob Kling,
Charles Dunlop, 1995, 476-89, Academic Press, Orlando.

Charlotte Hess, Elinor Ostrom "Understanding Knowledge as a Common: From Theory 1039

to Practice", 2006, MIT Press, Cambridge, Mass..
Pekka Himanen "The Hacker Ethic and the Spirit of the Information Age", 2001, 1040

Random House, New York.
Christine Hine "Virtual Ethnography", 2000, Sage, London. 1041

Douglas Holmes, George Marcus "Cultures of Expertise and the Manageňment of 1042

Globalization: Toward the Re-Functioning of Ethnography", Global Assemblages:
Technology, Politics, and Ethics as Anthropological ProblemsOng AiwaStephen J.
Collier, 2005, 235-52, Blackwell, Boston.

Oliver Wendell Holmes "The Path of Law", Harvard Law Review, 10, 1897, 457. 1043

Patrick D. Hopkins "Sex/Machine: Readings in Culture, Gender and Technology", 1998, 1044

Indiana University Press, Bloomington.
Bernardo A. Huberman "The Ecology of Computation", 1988, North-Holland, 1045

Amsterdam.
Julian Huxley "New Bottles for New Wine: Essays", 1957, Harper, New York. 1046

Peter Jaszi, Martha Woodmansee "The Construction of Authorship: Textual 1047

Appropriation in Law and Literature", 1994, Duke University Press, Durham, N.C..

Two Bits Christopher M. Kelty 253

https://twobits.net
https://kelty.org/

Adrian Johns "The Nature of the Book: Print and Knowledge in the Making", 1998, 1048

University of Chicago Press, Chicago.
Neils Jorgensen "Putting It All in the Trunk: Incremental Software Development in the 1049

FreeBSD Open Source Project", Information Systems Journal, 11.4, 2001, 321-36.
Neils Jorgensen "Incremental and Decentralized Integration in FreeBSD", Perspectives 1050

on Free and Open Source SoftwareFeller et al., 2004, 227-44, MIT Press,
Cambridge, Mass..

Robert et al. Kahn "The Evolution of the Internet as a Global Information System", 1051

International Information and Libraries Review, 29, 1997, 129-51.
Robert Kahn, Vint Cerf "A Protocol for Packet Network Intercommunication", IEEE 1052

Transactions on Communications Com, 22.5, 1974-05, 637-44.
Peterr Keating, Alberto Cambrosio "Biomedical Platforms: Realigning the Normal and 1053

the Pathological in Late-twentieth-century Medicine", 2003, MIT Press, Cambridge,
Mass..

Christopher Kelty "Cultures Open Sources", Anthropological Quarterly, 77.3 (summer), 1054

2004, 499-506, [http://aq.gwu.edu/archive/table_summer04.htm].
Christopher Kelty "Punt to Culture", Anthropological Quarterly, 77.3 (summer), 2004, 1055

547-58.
Lori Kendall "Oh No! Im a NERD! Hegemonic Masculinity on an Online Forum", Gender 1056

and Society, 14.2, 2000, 256-74.
Brian William Keves "Open Systems Formal Evaluation Process", Paper presented at 1057

the USENIX Association Proceedings of the Seventh Systems Administration
Conference (LISA VII), 1993-11-1, Monterey, California.

Tracy Kidder "The Soul of a New Machine", 1981, Little, Brown, Boston. 1058

Gill Kirkup, Linda Janes, Kath Woodward, Fiona Hovenden "The Gendered Cyborg: A 1059

Reader", 2000, Routledge, London.
Friedrich Kittler "Discourse Networks 1800/1900", 1985;, Stanford University Press, 1060

Stanford, Calif..
Friedrich Kittler "Gramophone, Film, Typewriter", 1986, Stanford University Press, 1061

Stanford, Calif..
Rob Kling "Computerization and Controversy: Value Conflicts and Social Choices", 1062

1996, Academic Press, San Diego.
Donald Knuth "The Art of Computer Programming", 1997, Addison-Wesley, Reading, 1063

Mass..
Robert Kohler "Lords of the Fly: Drosophila Genetics and the Experimental Life", 1994, 1064

University of Chicago Press, Chicago.
Ernesto Laclau, Chantal Mouffe "Hegemony and Socialist Strategy", 1985, Verso, 1065

London.

Two Bits Christopher M. Kelty 254

https://twobits.net
https://kelty.org/

Hannah Landecker "Culturing Life: How Cells Became Technologies", 2007, Harvard 1066

University Press, Cambridge, Mass..
Bruno Latour "Science in Action: How to Follow Scientists and Engineers through 1067

Society", 1987, Harvard University Press, Cambridge, Mass..
Bruno Latour "Drawing Things Together", Representation in Scientific PracticeMichael 1068

Lynch, Steve Woolgar, 1990, 19-68, MIT Press, Cambridge, Mass..
Bruno Latour "Pandoras Hope: Essays on the Reality of Science Studies", 1999, 1069

Harvard University Press, Cambridge, Mass..
Bruno Latour "What Rules of Method for the New Socio-scientific Experiments", 1070

Experimental Cultures: Configurations between Science, Art and Technology
1830-1950, Conference Proceedings, 2001, 123, Max Planck Institute for the
History of Science, Berlin.

Bruno Latour, Peter Weibel "Making Things Public: Atmospheres of Democracy", 2005, 1071

MIT Press, Cambridge, Mass..
Bruno Latour "Re-assembling the Social: An Introduction to Actor-Network Theory", 1072

2005, Oxford University Press, Oxford.
John Law "Technology and Heterogeneous Engineering: The Case of Portuguese 1073

Expansion.", The Social Construction of Technological Systems: New Directions in
the Sociology and History of TechnologyW. E. Bijker, T. P. Hughes, T. J. Pinch, 1987,
111-134, MIT Press, Cambridge, Mass..

John Law, John Hassard "Actor Network Theory and After", 1999, Blackwell, Malden, 1074

Mass..
John Law "Aircraft Stories: Decentering the Object in Technoscience", 2002, Duke 1075

University Press, Durham, N.C..
James Leach, Dawn Nafus, Berbard Krieger "Gender: Integrated Report of Findings. 1076

Free/Libre and Open Source Software", Policy Support (FLOSSPOLS), D 16, 2006,
[http://www.jamesleach.net/downloads/FLOSSPOLS-D16-Gender_Integrated_-
Report_of_Findings.pdf].

J. A. N. Lee, R. M. Fano, A. L. Scherr, F. J. Corbato, V. A. Vyssotsky "Project MAC", Annals 1077

of the History of Computing, 14.2, 1992, 9-42.
Josh Lerner, Jean Tirole "Some Simple Economics of Open Source", Industrial 1078

Economics, 50.2 (June), 2002-06, 197-234.
Lawrence Lessig "The New Chicago School", Legal Studies, 27.2, 1998, 661-91. 1079

Lawrence Lessig "Code and Other Laws of Cyber Space", 1999, Basic Books, New York. 1080

Lawrence Lessig "The Future of Ideas: The Fate of the Commons in a Connected 1081

World", 2001, Random House, New York.
Lawrence Lessig "Free Culture: The Nature and Future of Creativity", 2003, Penguin, 1082

New York.

Two Bits Christopher M. Kelty 255

https://twobits.net
https://kelty.org/

Lawrence Lessig "Code: Version 2.0", 2006, Basic Books, New York. 1083

Steven Levy "Hackers: Heroes of the Computer Revolution", 1984, Basic Books, New 1084

York.
Don Libes, Sandy Ressler "Life with UNIX: A Guide for Everyone", 1989, Prentice Hall, 1085

Englewood Cliffs, N.J..
Jennifer Light "When Computers Were Women", Technology and Culture, 40.3 (July), 1086

1999-07, 455-483.
John Lions "Lions Commentary on UNIX 6th Edition with Source Code", 1977, Peer to 1087

Peer Communications, San Jose.
Walter Lippmann "The Phantom Public", 1927, Macmillan, New York. 1088

Jessica Litman "Digital Copyright", 2001, Prometheus Books, New York. 1089

Alan Liu "The Laws of Cool: Knowledge Work and the Culture of Information", 2004, 1090

University of Chicago Press, Chicago.
Adrian MacKenzie "Cutting Code: Software and Sociality. Digital Formations Series", 1091

2005, Peter Lang, New York.
Donald A. MacKenzie "Mechanizing Proof: Computing, Risk, and Trust", 2001, MIT 1092

Press, Cambridge, Mass..
Michael Mahoney "The Roots of Software Engineering", CWI Quarterly, 3.4, 1990, 1093

325-34.
Michael Mahoney "The Structures of Computation", The First Computers: History and 1094

ArchitecturesRaul Rojas, Ulf Hashagen, 2000, 17-32, MIT Press, Cambridge, Mass..
Michael Mahoney "In Our Own Image: Creating the Computer", The Changing Image 1095

of the SciencesIda Stamhuis, Teun Koetsier, Kees de Pater, 2002, 9-28, Kluwer
Academic Publishers, Dordrecht.

Michael Mahoney "Finding a History for Software Engineering", Annals of the History 1096

of Computing, 26.1, 2004, 8-19.
Michael Mahoney "The Histories of Computing(s)", Interdisciplinary Science Reviews, 1097

30.2, 2005, 119-35.
Carl Malamud "Exploring the Internet: A Technical Travelogue", 1992, Prentice Hall, 1098

Englewood Cliffs, N.J..
Karl Mannheim "Ideology and Utopia: Introduction to the Sociology of Knowledge", 1099

1946, Harcourt and Brace, New York.
George Marcus, Michael M. J. Fischer "Anthropology as Cultural Critique: An 1100

Experimental Moment in the Human Sciences", 1986, University of Chicago Press,
Chicago.

George Marcus, James Clifford "Writing Culture: The Poetics and Politics of 1101

Ethnography", 1986, University of California Press, Berkeley.

Two Bits Christopher M. Kelty 256

https://twobits.net
https://kelty.org/

George Marcus "Ethnography through Thick and Thin", 1998, University of Chicago 1102

Press, Chicago.
Janer Margolis, Allen Fisher "Unlocking the Clubhouse: Women in Computing", 2002, 1103

MIT Press, Cambridge, Mass..
James Martin "Viewdata and the Information Society", 1982, Prentice Hall, Englewood 1104

Cliffs, N.J..
Peter Matheson "The Imaginative World of the Reformation", 2000, T and T Clark, 1105

Edinburgh, Scotland.
Regis McKenna "Whos Afraid of Big Blue? How Companies Are Challenging IBMand 1106

Winning", 1989, Addison-Wesley, Reading, Mass..
M. Kirk McKusick "Twenty Years of Berkeley Unix: From AT&T-owned to Freely 1107

Redistributable", Open Sources: Voices from the Open Source RevolutionChris et
al. Dibona, 1999, 31-46, OReilly Press, ACM Sebastopol, Calif..

Marshall McLuhan "Understanding Media: The Extensions of Man", 1964, MIT Press, 1108

Cambridge, Mass..
Marshall McLuhan "The Gutenberg Galaxy: The Making of Typographic Man", 1966, 1109

Toronto: University of Toronto Press.
Robert Merges, Peter Menell, Mark Lemley "Intellectual Property in the New 1110

Technological Age", 2003, Aspen Publishers, New York.
Robert Merton "The Normative Structure of Science", The Sociology of Science: 1111

Theoretical and Empirical Investigations, 1973, 267-80, University of Chicago
Press, Chicago.

Daniel Miller, Don Slater "The Internet: An Ethnography", 2000, Berg, Oxford. 1112

Thomas Misa, Philip Brey, Andrew’ Feenberg "Modernity and Technology", 2003, MIT 1113

Press, Cambridge, Mass..
Audris Mockus, Roy T. Fielding, James Herbsleb "Two Case Studies of Open Source 1114

Software Development: Apache and Mozilla", ACM Transactions in Software
Engineering and Methodology, 11.3, 2002, 309-46.

Annemarie Mol "The Body Multiple: Ontology in Medical Practice", 2002, Duke 1115

University Press, Durham, N.C..
Glyn Moody "Rebel Code: Inside Linux and the Open Source Revolution", 2001, 1116

Perseus, Cambridge, Mass..
Calvin Mooers "Computer Software and Copyright", Computer Surveys, 7.1 (March), 1117

1975-03, 45-72.
Milton Mueller "Ruling the Root: Internet Governance and the Taming of Cyberspace", 1118

2004, MIT Press, Cambridge, Mass..
John Naughton "A Brief History of the Future: From Radio Days to Internet Years in a 1119

Lifetime", 2000, Overlook Press, Woodstock, N.Y..

Two Bits Christopher M. Kelty 257

https://twobits.net
https://kelty.org/

David Noble "Digital Diploma Mills: The Automation of Higher Education", 3.1, 1120

1998-01-05, [http://www.firstmonday.org/issues/issue3_1/].
Arthur L. Norberg, Judy ONeill "A History of the Information Techniques Processing 1121

Office of the Defense Advanced Research Projects Agency", 1992, Charles
Babbage Institute, Minneapolis.

Arthur L. Norberg, Judy ONeill "Transforming Computer Technology: Information 1122

Processing for the Pentagon, 1962-1986", 1996, Johns Hopkins University Press,
Baltimore.

Walter Ong "Ramus, Method, and the Decay of Dialogue: From the Art of Discourse to 1123

the Art of Reason", 1983, University of Chicago Press, Chicago.
Elinor Ostrom "Governing the Commons: The Evolution of Institutions for Collective 1124

Action", 1991, Cambridge University Press, Cambridge.
Bruce Perens "The Open Source Definition", Open Sources: Voices from the Open 1125

Source Revolution, Dibona et al., 1999, 171-188, OReilly Press, Sebastopol, Calif.,
[http://perens.com/OSD.html
http://www.oreilly.com/catalog/opensources/book/perens.html].

Bryan Pfaffenberger "A Standing Wave in the Web of our Communications: USENet 1126

and the Socio-technical Construction of Cyberspace Values", From Usenet to
CoWebs: Interacting with Social Information SpacesChristopher Lueg, Danyel
Fisher, 2003, 20-43, Springer, London.

Paul Rabinow "Essays on the Anthropology of Reason", 1997, Princeton University 1127

Press, Princeton.
Paul Rabinow "Anthropos Today: Reflections on Modern Equipment", 2003, Princeton 1128

University Press, Princeton.
Matt Ratto "The Pressure of Openness: The Hybrid work of Linux Free/Open Source 1129

Kernel Developers", 2003, San Diego.
Matt Ratto "Embedded Technical Expression: Code and the Leveraging of 1130

Functionality", Information Society, 21.3 (July), 2005-07, 205-13.
Eric S Raymond "The New Hackers Dictionary", 1996, MIT Press, Cambridge, Mass.. 1131

Eric S Raymond "The Cathedral and the Bazaar: Musings on Linux and Open Source 1132

by an Accidental Revolutionary", 2001, 79-135, OReilly Press, Sebastopol, Calif..
Eric S Raymond "The Art of UNIX Programming", 2004, Addison-Wesley, Boston. 1133

Hans-Jörg Rheinberger "Towards a History of Epistemic Things: Synthesizing Proteins 1134

in the Test Tube", 1997, Stanford University Press, Stanford, Calif..
Howard Rheingold "The Virtual Community: Homesteading on the Electronic Frontier", 1135

1993, MIT Press, Cambridge, Mass..
Paul Ricoeur "Lectures on Ideology and Utopia", 1986, Columbia University Press, New 1136

York.

Two Bits Christopher M. Kelty 258

https://twobits.net
https://kelty.org/

Annelise Riles "Real Time: Unwinding Technocratic and Anthropological Knowledge", 1137

American Ethnologist, 31.3 (August), 2004-08, 392-405.
Dennis Ritchie "The UNIX Time-Sharing System: A Retrospective", Bell System 1138

Technical Journal, 57.6, pt. 2 (July-August), 1978-07,
[http://cm.bell-labs.com/cm/cs/who/dmr/retroindex.html].

Mark Rose "Authors and Owners: The Invention of Copyright", 1995, Harvard 1139

University Press, Cambridge, Mass..
Peter Salus "A Quarter Century of UNIX", 1994, Addison-Wesley, Reading, Mass.. 1140

Peter Salus "Casting the Net: From ARPANET to Internet and Beyond", 1995, 1141

Addison-Wesley, Reading, Mass..
Susanne K. Schmidt, Raymund Werle "Coordinating Technology: Studies in the 1142

International Standardization of Telecommunications", 1998, MIT Press,
Cambridge, Mass..

Stephen Segaller "Nerds 2.0.1: A Brief History of the Internet", 1998, TV Books, New 1143

York.
Maha Shaikh, Tony Cornford "Version Management Tools: CVS to BK in the Linux 1144

Kernel", 2003-05-03, Portland, Oregon.
Steven Shapin, Simon Schaffer "Leviathan and the Air Pump: Hobbes, Boyle and the 1145

Experimental Life", 1985, Princeton University Press, Princeton.
Steven Shapin "The Social History of Truth: Civility and Science in Seventeenth 1146

Century England", 1994, University of Chicago Press, Chicago.
Adam Smith "The Theory of Moral Sentiments", 2002, Cambridge University Press, 1147

Cambridge.
Paul K. St. Amour "The Copywrights: Intellectual Property and the Literary 1148

Imagination", 2003, Cornell University Press, Ithaca, N.Y..
William Stallings "Data and Computer Communications", 1985, Macmillan, London. 1149

Richard Stallman "The GNU Manifesto", Dr. Dobbs, 10.3 (March), 1985-03, 30-35. 1150

Susan Leigh Star "The Cultures of Computing", 1995, Blackwell, Malden, Mass.. 1151

Susan Leigh Star, Karen Ruhleder "Steps towards an Ecology of Infrastructure: 1152

Complex Problems in Design and Access for Large-scale Collaborative Systems",
Information Systems Research 7, 1996, 111-33.

Neal Stephenson "In the Beginning Was the Command Line", 1999, Avon / Perennial, 1153

New York.
Carl Sunshine "Computer Network Architectures and Protocols", 1989, Plenum Press, 1154

New York.
Shigeru Takahashi "The Rise and Fall of the Plug Compatible Manufacturers", 2005, 1155

4-16.

Two Bits Christopher M. Kelty 259

https://twobits.net
https://kelty.org/

Andrew Tanenbaum "Computer Networks", 1981, Prentice Hall, Upper Saddle River, 1156

N.J..
Andrew Tanenbaum "Operating Systems: Design and Implementation", 1987, Prentice 1157

Hall, Englewood Cliffs, N.J..
Andrew Tanenbaum "The UNIX Marketplace in 1987: Life, the UNIverse and 1158

Everything", Proceedings of the Summer 1987 USENIX Conference, 1987, USENIX,
Phoenix, Ariz..

Charles Taylor "Sources of the Self: The Making of the Modern Identity", 1989, 1159

Harvard University Press, Cambridge, Mass..
Charles Taylor "Modes of Civil Society", Public Culture, 1990, 95-132. 1160

Charles Taylor "Multiculturalism and the Politics of Recognition", 1992, Princeton 1161

University Press, Princeton, N.J..
Charles Taylor "Modern Social Imaginaries", 2004, Duke University Press, Durham, 1162

N.C..
Charis Thompson "Making Parents: The Ontological Choreography of Reproductive 1163

Technologies", 2005, MIT Press, Cambridge, Mass..
Ken Thompson, Dennis Ritchie "The UNIX Time-Sharing System", 17.7 (July), 1974, 1164

365-75.
Walter F Tichy "RCS: A System for Version Control", Software: Practice and Experience, 1165

15.7 (July), 1985, 637-54.
Linus Torvalds, David Diamond "Just for Fun: The Story of an Accidental 1166

Revolutionary", 2002, HarperCollins, New York.
Ilkka Tuomi "Networks of Innovation: Change and Meaning in the Age of the Internet", 1167

2002, Oxford University Press, New York.
Alan Turing "On Computable Numbers, with an Application to the 1168

Ent-scheidungsproblem", 2.1, 1937, 230.
Sherry Turkle "The Second Self: Computers and the Human Spirit", 1984, New York: 1169

Simon and Schuster.
Sherry Turkle "Life on the Screen: Identity in the Age of the Internet", 1995, Simon 1170

and Schuster, New York.
Fred Turner "Where the Counterculture Met the New Economy", Technology and 1171

Culture, 46.3 (July), 2005-07, 485-512.
Fred Turner "From Counterculture to Cyberculture: Stewart Brand, the Whole Earth 1172

Network, and the Rise of Digital Utopianism", 2006, University of Chicago Press,
Chicago.

Ellen Ullman "Close to the Machine: Technophilia and Its Discontents", 1997, City 1173

Lights, San Francisco.
Ellen Ullman "The Bug: A Novel", 2003, Nan A. Talese, New York. 1174

Two Bits Christopher M. Kelty 260

https://twobits.net
https://kelty.org/

Siva Vaidhyanathan "Copyrights and Copywrongs; The Rise of Intellectual Property 1175

and How It Threatens Creativity", 2001, New York University Press, New York.
Greg R. Vetter "The Collaborative Integrity of Open-Source Software", Utah Law 1176

Review, 2004.2, 2004, 563-700.
Greg R. Vetter "Infectious Open Source Software: Spreading Incentives or Promoting 1177

Resistance?", Rutgers Law Journal, 36.1 (fall), 2004, 53-162.
Vernor Vinge "The Coming Technological Singularity: How to Survive in the 1178

Post-Human Era", 1993,
[http://www.rohan.sdsu.edu/faculty/vinge/misc/singularity.html].

Eric Von Hippel "Democratizing Innovation", 2005, MIT Press, Cambridge, Mass.. 1179

Judy Wajcman "Feminism Confronts Technology", 1991, Polity, Cambridge. 1180

Judy Wajcman "Reflections on Gender and Technology Studies: In What State Is the 1181

Art?", Social Studies of Science, 30.3, 2000, 447-64.
Mitchell Waldrop "The Dream Machine: J. C. R. Licklider and the Revolution that Made 1182

Computing Personal", 2002, Viking, New York.
John Walsh, Todd Bayma "Computer Networks and Scientific Work", Social Studies of 1183

Science, 26.3 (August), 1996-08, 661-703.
Michael Warner "The Letters of the Republic: Publication and the Public Sphere in 1184

Eighteenth-century America", 1990, Harvard University Press, Cambridge, Mass..
Michael Warner "Publics and Counterpublics", Public Culture, 14.1, 2002, 49-90. 1185

Michael Warner "Publics and Counterpublics", 2003, Zone Books, New York. 1186

Peter Wayner "Free for All: How LINUX and the Free Software Movement Undercut the 1187

High-Tech Titans", 2000, Harper Business, New York.
Max Weber "Objectivity in the Social Sciences and Social Policy", The Methodology of 1188

the Social SciencesEdward Shils, Henry A. Finch, 1949, 50-112, Free Press, New
York.

Steven Weber "The Success of Open Source", 2004, Harvard University Press, 1189

Cambridge, Mass..
Richard L. Wexelblat "History of Programming Languages", 1981, Academic Press, 1190

New York.
Sam Williams "Free as in Freedom: Richard Stallmans Crusade for Free Software", 1191

2002, OReilly Press, Sebastopol, Calif..
Fiona Wilson "Cant Compute, Wont Compute: Womens Participation in the Culture of 1192

Computing", New Technology, Work and Employment, 18.2, 2003, 127-42.
Samuel M. Wilson, Leighton C. Peterson "The Anthropology of Online Communities", 1193

Annual Reviews of Anthropology, 31, 2002, 449-67.
Biao Xiang "Global Bodyshopping: An Indian Labor System in the Information 1194

Technology Industry", 2006, Princeton University Press, Princeton.
Slavoj iek "Mapping Ideology", 1994, Verso, London. 1195

Two Bits Christopher M. Kelty 261

https://twobits.net
https://kelty.org/

Book Index 1196

Two Bits Christopher M. Kelty 262

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Index

Abelson, Hal 87, 741, 761-763
Actor Network Theory 67, 341, 789
adaptability 40, 52, 618, 627, 642, 702,
708, adaptation vs., 618, as a form of
critique, 618, 702, planning vs., 618, 627,
642, 708
Adaptability 710, planning vs., 710
affinity (of geeks) 38-39, 80-83, 102,
130, 183-185, 237, 289, 339-340, 538,
729, 865, 874-876
allegory, of Protestant Reformation
189-243, 288, 341, 433
American National Standards
Institute (ANSI) 457-458
Amicas (corporation) 95-104, 134-136,
244-261, 435
anarchism 628, 889
Andreessen, Marc 300-303, 664
antitrust 160, 364, 473-475, 490
Apache (Free Software project) 52,
322, 334, 620-624, 622-625, 661-689,
676, 691-692, 805, individual vs. group
innovation, 676
Applied Data Research (corporation)
363
Arendt, Hannah 72
Arpanet (network) 353, 403-410,
483-501, 519, 609, 630, 664
artificial intelligence 263-269, 274
Artificial Intelligence Lab (AI Lab), at
MIT 529-539
artificial Intelligence Lab (AI Lab), at
MIT 608-614
AT&T 350-352, 370-384, 371, 401, 446,
447, 464-471, 477, 556, 561, 566, 569,
591, 636, 688, 711, 885, Bell
Laboratories, 371, 688, 711, divestiture
in, 591, divestiture in 1984, 447, version
of EMACS, 561, 566, 569, version of UNIX,
401, 446
attribution 779, 818, 829, 849,

copyright licenses and, 779, 829,
copyright licensing and, 818, dissavowal
of, 849
Authorship 814-843
authorship 229, 567, 601, 755, 798,
819, moral rights of, 755, ownership vs.,
601, 819
availability 40, 442, 480, 506, 886, open
systems and, 40, 442, 480, 506,
reorientation of power knowledge and,
886
Bangalore 131-138
Baraniuk, Richard 721-757, 793, 865
Barlow, John Perry 137, 165, 775
Behlendorf, Brian 332-334, 665, as
head of Apache, 665
Bentham, Jeremy 522-523
Berkeley Systems Distribution (BSD)
(version of UNIX) 334, 401-410, 459,
508, 646, 674, 691, 710-711, FreeBSD,
646, 674, 691
Berkman Center for Internet and
Society 762-763
Berlin 65, 78-80, 111-113, 129, 134, 183
Berners-Lee, Tim 308-309, 509, 663
Bitkeeper (Source Code Management
software) 693-705
blogosphere, as recursive public 877
Bolt, Beranek, and Newman (BBN)
404
Bone, Jeff 152-178
Boyle, James 89, 751, 759-762, 769,
780-782
Brin, David 157
Brooks, Frederick 364
Brown, Glen Otis 775-785, 843,
845-868
Bruno, Giordano 492
BSD License 311, 313, 407-409
bugs 318, 666, 687, 708-713
Burris, C. Sidney 735

Two Bits Christopher M. Kelty 263

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

C (programming language) 350, 369
Calvinism 286
Cathedral and the Bazaar 63, 323,
327-330, 720
censorship 153, 159-160, 164-169
Cerf, Vinton 403, 497-499
Chari, Bharath 136
Clark, David 174, 178, 498
COBOL (programming language) 360
Coleman, Gabriella 517
collaboration 442, 460, 680, 830, 884,
competition vs., 442, 460, 884, different
meanings of, 680, forking vs., 830
Commité Consultative de
Information, Technologie et
Télécommunications (CCITT) 489, 504
commons 57-59, 100, 729-730
communities 628, 743, 748, 812, 822,
823, norms and, 812, 822, 823
comp.os.minix 640, 643, 646, ”Linux is
obsolete” debate on, 646
Computer Corporation of America
(CCA) 546-606, 591
Concurrent Versioning System (cvs)
318, 623, 686, 690, 693, history of, 690,
Linux and, 693
Connexions project 23, 29, 41, 58-59,
62, 722-729, 731, 735, 737, 738, 740,
741, 744, 748, 759, 769, 779, 798, 798,
799, 801, 808, 810, 814, 816, as Free
Software project, 748, as ”factory of
knowledge”, 738, connection to Creative
Commons, 759, 769, history and genesis
of, 731, line between content and
software, 808, meaning of publication,
798, model of learning, 744, model of
learning in, 737, modules in, 737, Open
CourseWare, 741, 769, relationship to
education, 740, relationship to hypertext,
779, roles in, 810, 814, 816, stages of
producing a document in, 799, 801,
textbooks and, 735, 798
content 750-755
control, relationship to power 215,
218
CONTU report 594

coordination (component of Free
Software) 52, 315-321, 616-619, 618,
626-635, 636, 648, 662, 666-716, 679,
697, 710, 728, 743, 748, 756, 813, 824,
individual virtuosity vs. hierarchical
planning, 618, 648, 662, 679, 710,
modulations of, 697, 743, 748, 756, 813,
824, of Linux vs. Minix, 636
copyleft licenses (component of Free
Software) 147, 744, 748, 825, derivative
uses and, 825, modulations of, 744, 748,
825
Copyleft licenses (component of Free
Software) 310-314, 407, 513, 514-624,
524, 751, 762, 779, 830, 836, 848, 849,
887, as hack of copyright law, 524,
commercial use and, 779, Creative
Commons version, 848, derivative uses
and, 779, 836, 849, disavowal clause in,
849, forking and, 830, modulations of,
751, 762
Copyright 229-231, 524-525, 525, 539,
545, 586, changes in 1976, 525, 539, 586,
changes in 1980, 539, 586, infringement
and software, 545, legal definition of
software and, 545, requirement to
register, 586, rights granted by, 525,
software and copyrightability, 545
copyright 28-29, 391, 604, 765, 807,
815, changes in 1976, 391, requirement
to register, 765, specificity of media and,
807, transfer of, 604, works for hire, 815
copyright infringement 586, 600, 603,
legal threats and, 603, redistribution of
software as, 600
Copyright infringement 558, 561, 568,
569, 582, EMACS controversy and, 558,
569, infringement on own invention, 582,
legal threats and, 568, permissions and,
561
Crain, Patricia 228-229
Creative Commons 23, 29, 41, 58-59,
62, 729-730, 759-785, 762, 765, 769,
778, 818-820, 848, activism of, 765,
connection to Connexions, 759, 769,
marketing of, 778, origin and history of,

Two Bits Christopher M. Kelty 264

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

762, writing of licenses, 848
credit 815-820, 849-855, 888, see also
attribution, 849, 888
critique, Free Software as 618-619,
660, 702-705, 716
cultural significance 45-46, 727, 787,
878
culture 20, 115, 134, 723, 844, 856, 860,
as experimental system, 20, Creative
Commons version of, 856, law vs., 860,
punting to, 844
Cygnus Solutions (corporation) 298,
332
debugging 638-643, 666, 681, 708,
patching vs., 666, 681, 708
Defense Advanced Research Projects
Agency (DARPA) 403-410, 496-497
Defense, Department of 496-507
Delanda, Manuel 520
design 245-247, 392-394, 533-534, 651,
653, evolution, and, 653
Dewey, John 75, 241, 522, 716, 718
diff (software tool) 379-381, 400, 688,
711, history of, 688
differentiation of software 352, 401,
412-413, 453-454, 677, in Apache, 677,
see also forking and sharing source code,
677
Digital Equipment Corporation
(corporation) 423-424, 487, 556-557,
DECNet, 487
Digital Millennium Copyright Act
(DMCA) 298
Digital signal processing (DSP) 722,
734, 793, 813
Disney, Walt 767
distance learning 740-742
distributed phenomena,
ethnography of 65-71
Domain Name System (DNS) 156, 322
dotcom era 332-336
Doyle, Sean 93-99, 129, 165, 183,
219-225, 244-247, 256-261, 435
Dyson, Esther 165
editions, print vs. electronic 805-808,
see also versions, 805

Eisenstein, Elizabeth 795-796, 803
Eldred, Eric 761-764
EMACS (text editor) 211, 519-624, 527,
532, 541, 544, 558, 629, 645, 701, 754,
887, controversy about, 541, 701, 887,
ersatz versions, 532, 541, 544, legal
status of, 558, modularity and
extensibility of, 527, number of users,
645
EMACS commune 535-554, 555,
568-569
End User License Agreements
(EULAs) 517
enlightenment 190-193, 238-241,
260-261, 751, 796
entrepreneurialism 102-106, 247-255,
889
ethnographic data 68, 519, availability
of, 68, 519, mailing lists and, 519
ethnography 63-64, 79-80, 341-342
evil 219-225, 232-233, 309
Evil 435
experiment, collective technical
53-55, 293, 886-889
experimentation 522, 606, 620,
623-624, 714-716, 718, 726-727,
783-784, 832-833, administrative reform
as, 522, see also modulations, 726
Extensible Mark-up Language (XML)
802-803, 833
Extropians 264
fair use 586-587, 595, 865
Feyerabend, Paul 259-260
figuring out 58-59, 62-63, 192, 340-342,
419, 451-452, 522, 705, 770-785, 789,
826-829, 835, 881
File Transfer Protocol (ftp) 639
finality 41-43, 789-846, 803, 810,
certainty and stability vs., 789, fixity vs.,
810, in Wikipedia and Connexions, 803
Firefox 295, 319-320, see also Netscape
Navigator, 319
fixity 796-803, 810
folklore of Internet 164, see also
usable pasts, 164
forking 397-410, 677, 694, 827, in

Two Bits Christopher M. Kelty 265

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

Apache, 677, in Connexions, 827, in Linux,
694
FORTRAN (programming language)
355, 360
Foucault, Michel 193, 238-241
Free Documentation License (FDL)
754-755, 754-755
Free software 480, components of, 480
Free Software 19-22, 20, 25, 45, 48, 55,
291-346, 292, 297, 338, 377, 617, 696,
720, 727, 794, anthropology and, 720, as
experimental system, 20, 45, 292,
components of, 727, modulations of, 55,
794, nonfree tools and, 696, open source
vs., 20, 48, 297, 338, 617, passim, 377,
relation to Internet, 25
Free Software Foundation 103,
297-298, 324, 328, 604-612, 614, 629,
644-645, 834-835, cult status of, 629,
Linux and Apache vs., 614
FreeBSD 646, 674, 691
Freeware summit 323-328
fun, and development of Linux 623,
645-646
Fun, and development of Linux 697
futurology 262-282
Geeks 20-21, 190-196
geeks 27, 63, 77-83, 101-109, 106, 193,
240, 281, 288-289, 299-302, 341, 345,
501, 512, 609, 716, 772, 812, as
moderns, 193, 240, 281, 716, hackers vs.,
106, self-representation, 63, 341
Geertz, Clifford 122-125
Gender 135
gender 280, 721
General Motors (GM) 431, 503
General Public License (GPL) 310-313,
514-624, 610, 629, 698, 754,
development of, 610, passim, 698, 754
Gilmore, John 164-165
GNU (Gnu’s Not Unix) 480, 544-584
GNU C Compiler (gcc) 202-208, 523,
629, 637
GNU Hurd (kernel) 629
GNU Manifesto 551-558, 583
goals, lack of in Free Software

618-619, 681-683
Goals, lack of in Free Software 791,
norms as, 791
Goody, Jack 795
Gosling, James 543-607, 712
GOSMACS (version of EMACS)
543-584, 601, 712
Grassmuck, Volker 113
Gropper, Adrian 93-99, 129, 247-255,
435
Grune, Dick 690
Gulhati, Ashish 174
Habermas, Jürgen 71-73, 117, 148
Hacker ethic 519-520, 570-572
hacker ethic 51, 606-615
hackers 106-109, 330-334, 519, 606,
618, 626-627, curiosity and virtuosity of,
618, hacks and, 519
Hahn, Eric 307, 323
Harthill, Rob 671-683
Hayden, Robert 107-109
Hayek, Friedrich 241, 286, 485
healthcare 248, 250, allocation of, 250,
information technology in, 248
Hecker, Frank 306-307, 323
Hendricks, Brent 721-757, 793, 812,
815-829, 836, 865
hierarchy, in coordination 618-623,
648-658
Holmes, Oliver Wendell 847
Hopper, Grace 355
Housman, A. E. 821
httpd 622, 663-685
Huxley, Julian 265
Hypertext Transfer Mark-up
Language (HTML) 663, 803
Hypertext Transfer Protocol (http)
222, 509, 663
ideology 119-125
implementation of software 349
Informatics (corporation) 363
information society 31, 70, see also
public sphere, 70
Infrastructure 184-188
infrastructure 104, 233-237, 417,
479-480, 613, 620, 631, 750, 797, 886, of

Two Bits Christopher M. Kelty 266

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

publishing, 750, 797
Institute of Electrical and Electronics
Engineers (IEEE) 457-460, 473
institutional economics 780-782
Intel (corporation) 422-424, 476
intellectual property 193, 231, 233,
298, 305, 310, 328-329, 388-391,
407-409, 418, 436-442, 514-624, 567,
592, 595-615, 849, 884-887, strategy
and, 567, 592, 849
Intellectual property 196, 349
International Business Machines
(IBM) 214, 349, 423-424, 459-461
International Organization for
Standardization (ISO) 489-493,
492-495, 883
International Telecommunications
Union (ITU) 489-495
Internet 25-37, 36, 67-68, 78-83, 101,
115, 131, 139, 150, 152, 162-171, 164,
172-181, 489, 627, 882, early
development, 489, 627, folklore and, 164,
geeks and, 101, idea of order and, 115,
India and, 131, public spheres and, 139,
relation to Free Software, 25, 627,
singularity of, 36, 150, 152, 882
Internet Engineering Task Force
(IETF) 173-181, 507
Internet Society (ISOC) 178, 507
interoperability 418-439, 462, 480,
494-506
intervention, technology as 194,
247-289, 780, 811
Johns, Adrian 795-798
Joy, Bill 400-409, 432-433, 461, 528,
557, 712
Justice, Department of 301, 364
Kahn, Robert 403, 497
Kant, Immanuel 193, 238-239, 261,
520, 716
Katz, Lou 379-382
Keynes, John Maynard 485
Kittler, Friedrich 795
Labalme, Fen 564-572
lag, technological 256-258
LaTeX (typesetting language) 801

Latour, Bruno 796
legitimacy 30, circulation of knowledge
and, 30
legitimacy, circulation of knowledge
and 878-884
Leitl, Eugene 152, 175, 274-282, 336
Lessig, Lawrence 168-170, 761-785,
767, 780, 861, law and economics and,
780, 861, style of presentations, 767
liberalism, classical 157
libertarianism 164-165, 328
licensing, of UNIX 371-377
Licklider, J. C. R. 403
Linux (Free Software project) 52, 209,
322, 335, 396, 511, 608, 619-627, 630,
649, 651, 684, 691, 693, 736, 805, origins
in Minix, 396, 630, planning vs.
adaptability in, 651, process of decision
making, 649, Source Code Management
tools and, 684, VGER tree and, 693
Lions, John 386-396
LISP (programming language) 360,
599, interpreter in EMACS, 599
Locke, John 157
Luther, Martin 196-211
mainframes 422-426
Malmud, Carl 491-492
Mannheim, Karl 122-123
Massachusetts Institute of
Technology (MIT) 103, 608-614, 741,
open courseware and, 741
McCool, Rob 300, 622, 663-666
McGill, Scott 821
McIlroy, Douglas 370, 688
McKenna, Regis 439-440
McLuhan, Marshall 803
McVoy, Larry 694-705
meaning, regulation through law 861
MedCommons 100-102
mergers 462-464
Merton, Robert 791, 810, 890,
Mertonian norms, 791, 810, 890
Metcalfe’s Law 157
Mickey Mouse 767
microcomputers 426-428
Microsoft 213, 221, 225, 229, 301, 309,

Two Bits Christopher M. Kelty 267

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

387, 409, 461, 476, 547, 709, as Catholic
Church, 213, 225, Internet Explorer, 221,
225, 229, 301, Windows operating
system, 387, 409, 476, Xenix (version of
UNIX), 547
Mikro e.V. 112-113
Mill, John Stuart 157, 241
Miller, Dave 693
Minix (operating system) 394-396,
398-399, 621-622, 644, goals of, 644
Minix (operating systems) 630-649
modernity 238-240, 838, tradition and,
838
modifiability 38-44, 40-44, 41, 58-59,
441-442, 442, 480-485, 480-484, 508,
534, 592, 637-639, 652, 682, 710-713,
751-755, 773-779, 789, 824-827, 837,
887-891, EMACS and, 534, implications
for finality, 41, 789, modularity in
software, 652, 682, relation of different
disciplines to, 837
modulation 55, 622, 721, 726, 743, 747,
773, 783, 871, of Free Software, 55, 622,
721, 783, 871, practices of, 726, 743,
747, 773
Monopoly 435
monopoly 160, 351, 364, 371, 417-418,
438-441, 460, 476
Montgomery, Warren 560, 591
Moody, Glyn 64, 694
Moore’s Law 157
moral and technical order 79-82,
129-130, 148-150, 164, 173-174, 184,
188, 190, 194, 235, 273, 331, 342, 348,
384, 408-413, 417-420, 435-436, 452,
482, 511, 534-541, 631, 705, 730, 764,
771-772, 838, 865, 871, 884-889
Mosaic (web browser) 300-303, 509,
664
Motion Picture Association of
America (MPAA) 160
movement (component of Free
Software) 48, 292-295, 322-346, 339,
624, 728-730, 833, 876, function of, 339,
modulations of, 833, 876
Mozilla 222, 300-323

Mozilla Public License (MPL) 311-313
Multi-User Dungeons (MUDS) 628
Multics 369-370, 531
music 132-133, 182, 185, 804, 861-864,
875, production, 804, recursive public
and, 875
Napster 27, 80-82, 149, 151-172,
173-181, 188, 193, 278, 420, 766
National Center for Super Computing
Applications (NCSA) 300-303, 622,
664-666
Nesson, Charlie 775
Net neutrality 36
net.emacs (mailing list) 546-584
Netscape 47-48, 295-321, 330-331
Netscape Navigator 319-320
Netscape Navigator (application) 47,
295-321, 509
Netscape Public License (NPL) 311
Networks 482, 487, as products, 487,
protools for, 482, varieties of, 487
new httpd (mailing list) 665-689
norms 59, 168, 786-798, 790, 813, 825,
827, 835, 839-843, 841-845, 842, 843,
851, 858, 859, academic, 813, 827, 851,
channeling by legal means, 843, 859,
coordination and, 825, cultural, 835, 842,
858, evolution and, 841, existence of, 59,
790, 839, practices and technology vs.,
835
Novell 477
novelty, of Free Software 619,
704-705
Ong, Walter 795
ontology 383, 395, 412, 660, of linux,
660, of UNIX operating system, 383, 395,
412
Open access 21-23
open access 876, recursive public and,
876
Open content licenses 755
Open CourseWare (OCW) 741-743,
769-771
Open Software Foundation (OSF) 452
Open Source 20, 48, 297, 324, 335, 478,
617, 736, Free Software vs., 20, 48, 297,

Two Bits Christopher M. Kelty 268

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

335, 617, inspiration for Connexions, 736,
”Open Source Definition”, 324
Open Source Initiative 325
Open Sources 334
Open Systems 47, 50, 112, 308-310,
414-513, 434, 447, 481, 519, 540, 612,
884-887, intellectual property and, 434,
networks and, 481, operating systems
and, 447
Open Systems Interconnection (OSI)
353, 400, 419, 482, as reference model,
419, 482, TCP/IP, 353, 400
openness 47-50
Openness (component of Free
Software) 419, 432, 476, proprietary vs.,
432, 476, standardization and, 419
openness (component of Free
Software) 412, 414-442, 418, 429, 432,
434, 466, 471, 476-486, 749-751, 751,
825, closure vs., 434, definition of, 432,
goals of, 429, intellectual property and,
418, modulations of, 749, 825,
proprietary vs., 466, 751, standardization
and, 471, sustainability vs., 751
operating systems, history of 350-390

OReilly Press 323-324, 334
OReilly, Tim 323
packet-switching 496-497
participant observation 721, 783-784,
790-791, 848, writing copyright licenses
as, 848
Pascal (programming language)
400-402
patches (software) 649-652, 661, 666,
debugging vs., 666, voting in software
development and, 661
patents on software 586-587
pedagogy 348, 412, 480, 504, 630, 643,
729, Minix and, 643, network protocols
and, 504, operating systems and, 348,
412, 480, 630
peer production 617, 885
Perens, Bruce 313, 323, 701
perl (programming language) 54, 201,
323, 625

permission 817-826
planning 42-43, 180, 618-619, 710-712
polymaths 780, 811
Polymaths 234, transhumanists vs., 234
portability, of operating systems
360-368, 446-450
POSIX (standard) 452, 457-458
power, relationship to control 215,
225, see also reorientation of power and
knowledge, 225
practices 41-44, 292, 338-342, 341, 518,
520, 586, 617, 726, 743, 748, 835,
872-874, five components of Free
Software, 292, 520, 617, 726, 743, 748,
872, norms vs., 835, opposed to legal
changes, 586, stories as, 341, ”archival
hubris”, 341
Practices 29, five components of Free
Software, 29
pragmatism 259
Prentice Hall 639-640
printing press 795-797, 809
programming 175-176, 244-247,
350-361
programming languages 199-201,
350-396
progress 237, 266-271, 281-288
Progress 190-193
proliferation of software 351-352,
359-361, 412-413, 453-454, 531-532,
613, 885
proprietary systems 95, 371, 416, 422,
closed, 95, lock-in and, 422, open vs.,
371, 416
Protestant Reformation 189-243, 433
protestant Reformation 160, as usable
past, 160
protocols 164, 177, 353, 400, 419, 482,
distinguished from standards and
implementation, 353, 400, Open Systems
Interconnection (OSI), 419, 482, TCP/IP,
164, 177, 419, 482
public 23-29, 30-33, 115-130, 142, 144,
148, 181-188, 233, 835, 872-877,
autotelic and independent, 144, 148, 835,
see also recursive public, 872,

Two Bits Christopher M. Kelty 269

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

self-grounding of, 142
Public domain 549, contrasted with free,
549
public domain 308, 351, 547, 765-769,
782, 818, 821, Creative Commons
licenses and, 818, environmentalism and,
782, literary texts in, 821, meaning in
EMACS controversy, 547
public sphere 25, 34, 38, 70, 115, 620,
879, recursive public vs., 34, 38, 879,
theories of, 25, 70, 115, 620
publication 147-148, 161-163, 790, 798,
as notional event, 798, transformation by
Internet, 790
python (programming language) 201,
625
QED (text editor) 529
Raelians 264
Rand, Ayn 157
Raymond, Eric Steven 63-64, 297, 323,
325, 327-330, 334-335, 334-335, 338,
341, 344, 448, 626, 708, 720-724
RCS (software tool) 689-690, see also
Source Code Management tools, 689
Recording Industry Association of
America (RIAA) 152-153, 159-160, 174,
766
recursion, definition of 84-89
recursive public 23, 32, 35, 77-89, 82,
88, 149, 154, 168, 174, 233, 312, 342,
351, 374, 393-399, 506-509, 520, 538,
619-620, 660, 685, 702, 716, 727-730,
729, 787-789, 812, 835, 865, definition of,
23, 32, examples of, 154, 729, layers of,
35, 82, 88, 149, 154, 168, 174, 685, 702,
precursors of, 351, 374
Red Hat (corporation) 332
Redd, Kross 777
redistribution of software 600-604
Reedstrom, Ross 736, 742, 793, 836
Reformation vs. revolution 215
reformation vs. revolution 196, 253
regulation 168, 489, Internet, 168,
telecommunications, 489
religion 248
Religion 135-136

religious wars 196-201, 482-485
reorientation of power and
knowledge 20-21, 30-44, 182, 346, 441,
501, 520, 716, 782, 788-790, 795,
806-810, 872-891
Request for Comments (RFC) 171,
172-179, 483, 499-501, 883
reverse engineering 701
Rheingold, Howard 137, 165, 627
Rice University 720-723, 735, 769, legal
counsel of, 769
Richards, Paul 691
Ricoeur, Paul 124-125
Ritchie, Dennis 369-388, 413, 710-712
Roles, in Connexions 814-843
rumor on Usenet 558-565, 627-635
Rumor on Usenet 664
Sahlins, Marshall 849-851
Salus, Peter 64, 375-381, 405
sampling, musical 861-864
SCO (corporation) 450, 477
Second Life, as recursive public 877
Secrecy 349-356, 500-501, 534
secrecy 303-309, 474, 592
Shakar, Udhay 132-138, 165
Shambhala 677-683, 691, see also
Apache, 691
Shannon, Claude 111
sharing source code (component of
Free Software) 48, 348-398, 355, 378,
379, 387, 398-413, 518, 743, 747, 765,
824, before Software, 355, legal aspects,
379, modulations of, 743, 747, 765, 824,
pedagogical aspects, 378, 387, technical
aspects, 379
Silk-list (mailing list) 136-141, 139, as
a public, 139
singularity 157, 267-276
Skolnick, Cliff 668, 672, 674
social imaginary 44, 70-72, 115-130,
118, 124, 142-146, 164-174, 191, 342,
430, 482, 518, 764, 772-773, 880,
ideology vs., 118, 124
social movement, theories of 339
Software 500, 595, implementation of,
500, legal definition of source code and,

Two Bits Christopher M. Kelty 270

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

595, registration of copyright, 595
software 545, 586, copyrightability of,
545, registration of copyright, 586
Software development 327-334,
339-340
software development 243-246,
316-318, 584, 661, 666, 691, 713,
Apache project, 666, as spectrum, 713,
creating vs. maintaining, 584, patch and
vote method, 661, 691
Software manuals 754
software tools 318, 377-379, 687-688
Solaris (operating system) 409, 450,
464
Source code 442-444
source code 355, 359, 361-368,
587-588, 595, batch processing, 359,
legal definition and, 595, translation of,
355
Source Code Management tools
(SCMs) 617, 623, 684-705, 685, 686,
687, 691, 693, as tool for distribution,
687, definition of, 685, right to ”commit”
change, 691, see also Bitkeeper, 693, see
also Concurrent Versioning System (cvs),
686
Sparc (computer workstation) 409,
488
Stallman, Richard 211, 297-298, 313,
324, 327-330, 332-334, 338, 341, 344,
514-624, 626, 697, 754, 887
Stallman,Richard 645
standards 95, 112, 173, 222, 229, 233,
244, 309, 359, 415-417, 427, 437,
438-442, 445, 452, 458, 473, 485, 500,
508, 883-884, as form of competition,
427, 437, 445, 458, implementation, 458,
500, interface definition as, 452, Internet,
95, 112, 173, 222, 229, 233, ownership
of, 309, 473, programming languages,
359, validation of, 485, 500, 508
Standards 149, Internet, 149
standards organizations 419, 454-480,
501
standards processes 173-175, 178-180,
412, 482-485, 491-495, 499, 883-884

Sun Microsystems 303, 400, 461-470,
556-557, 696
Sundaram, Ram 136
System V Interface Definition (SVID)
458
Tanenbaum, Andrew 386-387, 394,
621-648, 630, 639, Minix and, 394, 630,
639
Taylor, Charles 72, 117-120, 126-129,
140-142, 173
tcl/tk (programming language) 201,
625
TCP/IP (Transmission Control
Protocol/Internet Protocol) 164, 177,
353, 400, 419, 482-509, 497, goals of,
497, included in BSD, 400
Technology 256, lag, 256
technology 27, 32, 34, 39, 82, 251, 282,
780, as argument, 27, 34, 39, 82, 282,
780, meanings of, 251, politics of, 32
TECO (text editor and programming
language) 529-530, 572, 598
Teilhard de Chardin, Pierre 265
telecommunications industry 489-494

Terbush, Randy 678
TeX 54
text editors 358-359, 401-402, 527-540
textbooks 394, 639, 722, 750, 834,
model in Connexions, 750, 834, on
operating systems and networks, 394,
639
Thau, Robert 677-683
Thompson, Ken 369-385, 400-401, 413,
688
time 241, 256, 262, 267, 281, initial
conditions and, 281, singularity and, 267,
technical progress and, 241, 256, 262
Torek, Chris 601
Torvalds, Linus 209-210, 326, 332, 338,
608, 623-626, 626, 693, autobiography
of, 626, in bitkeeper controversy, 693
trade secret law 377, 390-391,
398-399, 545, 589, 597, relationship to
public domain, 589
Trade secret law 586-592

Two Bits Christopher M. Kelty 271

https://twobits.net
https://kelty.org/

Two Bits - The Cultural Significance of Free Software

trademark law 407, 545
Transhumanism 234, polymaths vs.,
234
transhumanism 157, 189, 194, 265,
267, 811, Julian Huxley and, 265,
singularity and, 267
translation of source code 355-360
Traweek, Sharon 860
Trigdell, Andrew 701
Turing, Alan 355-357
unbundling 349, 362-364
uncertainty, in the law 586-606
Unipress 543-584, 599
Unisys 462-464
UNIX International 452, 469-472
UNIX operating system 202, 350-353,
353, 367, 387, 394, 401, 443, 448, 449,
626, 710, 805, 885, allegiance to versions
of, 448, 805, 885, as commercial product,
394, as part of speech, 449, development
of, 710, history of, 367, 443, Open
Systems and, 443, relationship to
Arpanet, 353, 401, standardization and,
443, Windows operating system vs., 387
UNIX philosophy 353, 386-387, 413
Unix to Unix copy protocol (uucp) 488

UNIX wars 446, 469-472
usable pasts 191-193, 213, 235,
282-288, 334, 344, 433
Usable pasts 492

Usenet 488, 519, 558, 597, 609, 627,
664, rumor on, 558, 627, 664
Usenix (user group) 377
user groups 456-457, /usr/group, 456
User groups 664
users, status in Connexions 815
VA Linux (corporation) 298, 332-335
vi (text editor) 401-402, 528
Vinge, Vernor 157, 267
Wall, Larry 332
Warner, Michael 117, 142-146
Weber, Max 66
Weber, Steven 314, 649, 707
White Stripes 777-778
Wikipedia (collaborative
encyclopedia) 26, 803-804, 815, 832
Wiley, Davis 755
Wilson, Andrew 668-670, 674
Wired (magazine) 137, 165, 664,
HotWired (online version of Wired), 664
workstations 446, 461-464
World Wide Web (www) 303, 308, 484,
509, 663-665
World Wide Web consortium (w3c)
309
X Windows 480
X/Open Consortium 452, 459-479, 465
Xerox PARC 488
Zawinski, Jamie 300-305, 319-322
Zimmerman, Steve 546-606, 591, 605

Two Bits Christopher M. Kelty 272

https://twobits.net
https://kelty.org/

	Two Bits
	Dedication
	Preface
	Acknowledgements
	Introduction

	Part I the internet
	1. Geeks and Recursive Publics
	From the Facts of Human Activity
	Geeks and Their Internets
	Operating Systems and Social Systems
	The Idea of Order at the Keyboard
	Internet Silk Road
	/pub
	From Napster to the Internet
	Requests for Comments
	Conclusion: Recursive Public

	2. Protestant Reformers, Polymaths, Transhumanists
	Protestant Reformation
	Polymaths and Transhumanists
	Conclusion

	Part II free software
	3. The Movement
	Forking Free Software, 1997-2000
	A Movement?
	Conclusion

	4. Sharing Source Code
	Before Source
	The UNIX Time-Sharing System
	Sharing UNIX
	Porting UNIX
	Forking UNIX
	Conclusion

	5. Conceiving Open Systems
	Hopelessly Plural
	Open Systems One: Operating Systems
	Figuring Out Goes Haywire
	Denouement
	Open Systems Two: Networks
	Bootstrapping Networks
	Success as Failure
	Conclusion

	6. Writing Copyright Licenses
	Free Software Licenses, Once More with Feeling
	EMACS, the Extensible, Customizable, Self-documenting, Real-time Display Editor
	The Controversy
	The Context of Copyright
	Conclusion

	7. Coordinating Collaborations
	From UNIX to Minix to Linux
	Design and Adaptability
	Patch and Vote
	Check Out and Commit
	Coordination Is Design
	Conclusion: Experiments and Modulations

	Part III modulations
	8. ''If We Succeed, We Will Disappear''
	After Free Software
	Stories of Connexion
	Modulations: From Free Software to Connexions
	Modulations: From Connexions to Creative Commons
	Participant Figuring Out

	9. Reuse, Modification, and the Nonexistence of Norms
	Whiteboards: What Was Publication?
	Publication in Connexions
	Agency and Structure in Connexions
	From Law and Technology to Norm
	On the Nonexistence of Norms in the Culture of No Culture
	Conclusion

	Conclusion
	The Cultural Consequences of Free Software

	Acknowledgement
	Acknowledgment

	Library of Congress
	Library of Congress Catalog

	Bibliography
	Book Index
	Index

